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PREFACE 

During	my	study	of	physics	at	 the	University	of	Munich,	 I	was	very	
lucky	to	have	attended	lectures	from	the	famous	Prof.	W.	Heisenberg.	

At	the	Technical	University	of	Munich	I	attended	lectures	from	the	
Nobel	prize	 laureate	Prof.	R.	Mössbauer.	 In	the	time	of	my	Diploma	
studies	 I	 worked	 under	 Prof.	 N.	 Riehl	 at	 the	 nuclear	 reactor	 in	
Garching	at	Munich,	about	the	diffusion	of	the	O18	isotope	in	ice	(P.	
Delibaltas	et	al).	Under	Prof.	J.	Chatzidimitriou	and	G.	Bozis,	I	 found	
periodic	 and	 periodic	 collision	 orbits	 in	 the	 general	 three	 body	
problem.	With	those	studies	I	obtained	the	Doctor	award	in	physics	of	
the	Aristotle	University	of	Thessaloniki.	

In	this	book	I	describe	some	events	of	the	cosmology.	 I	 tried	to	
make	more	accessible	different	difficult	meanings	of	the	cosmology,	
using	 a	 vacuum	 	 reference	 volume.	 I	 compared	 the	 pressure,	 the	
expansions	work,	the	heat	and	the	intrincing	energy	of	the	reference	
volume	to	the	analogous	observables	of	the	universe.	

I	describe	via	collisions	the	birth	of	a	planet's	satellite	and	then	I	
present	a	model	for	the	Big-Bang.		

In	the	following	I	circumscribe	some	of	the	latest	research	results	
of	 Physics	 at	 CERN	 in	 Geneva	 in	 a	 more	 comprehensible	 way	 and	
finally	I	describe	some	Cosmology	observables.	

From	 this	 side	 I	 want	 to	 express	my	 thanks	 to	 Helena	 for	 her	
linguistic	 help	 and	 Evan	 for	 his	 technical	 help	 and	 scientific	
discusions.	

P.E.	Delibaltas	
Thessaloniki,	March	2021	
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INTRODUCTION 

We	will	describe	three	events	that	take	place	in	our	universe	and	try	

to	 explain	 them	 using	 physic’s	 tools,	 in	 the	 same	 way,	 as	 the	

seismologists	explain	the	earthquakes	and	the	volcanologists	explain	

the	volcanoes.	In	the	first	case,	of	periodic	elastic	collisions,	we	made	

it	with	an	accuracy	to	eight	decimal	places.	

	

In	 the	 cases	of	 inelastic	 and	plastic	 collisions	we	did	 try	 to	 explain	

them	qualitatively	based	on	laws	of	physics	and	observations.		

● Periodic	 Elastic	 Collisions	 with	 relatively	 small	 velocities	 in	 the	

three-body	problem,	(the	Sun,	Jupiter	and	Saturn)	where	both	the	

energy	and	the	total	momentum	are	conserved.	

● Plastic	collision	of	two	bodies	with	enormous	velocities	and	masses	

producing	temperatures	of	the	order	1012K,	where	the	two	bodies	

unite,	their	masses	vaporize,	leaving	a	vacuum	behind	them.	In	this	

way	we	will	present	in	Sec.	8	a	model	for	the	Big-Bang.	In	this	case	

the	mechanical	energy	of	the	two	bodies	is	not	conserved	because	

it	 is	 transformed	 into	heat,	whereas	 the	momentum	(locally	 and	

totally)	 is	 conserved.	 Further	 we	 will	 try	 to	 give	 a	 physical	

explanation	 to	 some	 strange	meanings	 as	 the	 negative	 pressure	

and	the	dark	energy.	

● Inelastic	collisions	of	two	bodies	with	great	velocities,	where	their	

total	 energy	 is	 partly	 transformed	 into	heat,	 sound	and	 intrincic	

deformation	energy.	Parts	of	their	masses	are	hurled	far	away.	The	

total	momentum	of	the	bodies	is	also	not	conserved.		
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Finally,	 we	 will	 describe	 some	 general	 issues	 of	 Cosmology	 and	

explain	how	the	universe	had	been	dark	for	about	380000	yrs.	How	at	

the	 beginning	 of	 the	Big-Bang	 all	 particles	were	massless	 and	 how	

they	received	mass	to	build	finally	the	Hydrogen-atom	to	send	us	light.	
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1. PERIODIC COLLISION ORBITS 
IN THE THREE-BODY PROBLEM 

Four	 families	of	periodic	collision	orbits	are	published	 in	an	earlier	

work	(P.	Delibaltas,	1982).	 In	one	orbit	of	a	family	the	three	bodies	

consisted	 of	 the	 Sun,	 the	 Jupiter	 and	 the	 Saturn.	 The	 collision	 took	

place	between	the	Sun	and	Saturn.	The	third	body	Jupiter	stood	far	

away,	 (J.	 Chatzidimitriou,	 G.	 Bozis).	 The	 initial	 conditions	were	 the	

regularized	 at	 t = 0	 infinite	 momenta	 by	 a	 (Waldvogel)	

transformation	and	the	Sun	and	Saturn	collided	again	after	any	period	

T.	These	orbits	are	calculated	with	accuracy	to	eight	decimal	places.	

In	an	unit	system,	where	the	gravitational	constant	G=1	and	the	

total	mass	m!" +m#" +m!$ = m%&	was	m%& = 1	the	conserved	total	

momentum	 and	 mechanical	 energy	 were	p = 6.456 ×	10'(	and		

en = −6.58 × 10'(	respectively,	in	the	above	defined	units,	Fig.1.1.	

Fig.	1.1	
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To	 the	 question	 of	 some	 readers	 of	 the	 study,	 if	 one	 could	

numerically	continue	this	orbit	to	a	collision	in	a	Big-Bang	mode,	the	

answer	is	NO	because	the	mechanical	energy	in	the	case	of	the	Big-

Bang	is	not	conserved.
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2. PERFECT INELASTIC (PLASTIC) COLLISION 
BETWEEN TWO HOT BODIES  

Let	 us	 assume	 that	 two	 hot	 bodies	B)	 and	B*	 are	 in	 the	 state	 of	 a	

plasma	with	nearly	equal	restmasses	m+,	(without	restriction	of	the	

generality	and	i = 1, 2).	We	assume	that	they	have	been	found	close	

to	each	other,	their	distance	r	very	small	perhaps	because	of	pressure	

gradients,	so	that	the	repulsion	because	of	the	cosmological	constant	

Λ	which	is	added	to	the	Einstein	equations	to	stabilize	the	universe	is	

negligible	 in	relation	to	the	gravitational	attraction	~1/r*	 (see	sect.	

6.2)	and	it	can	be	taken	to	be	Λ=0.	Thus	the	bodies	B1	and	B2	come	to	

a	 collision.	 Let	 us	 divide	 the	 spheres	 in	 infinitesimal	 slices	 dm+	

perpendicular	 to	 the	 axis	 B)-B*.	 After	 the	 collision	 they	 build	 an	

embodiment.	 The	 plasma	 is	 an	 ionized	 gas	 charged	 with	 ions	 and	

electrons	giving	rise	 to	electric	 fields	and	charged	particles	 flowing	

give	rise	to	currents	and	magnetic	 fields,	consequently	to	radiation,	

(R.J.	Goldston,	P.H.	Rutherford).	The	energy	density	of	a	mass	density	

ρ-	 is	 transformed	 into	 radiation	 density	 energy	 ρ. = T(.	 We	 are	

interested	in	the	motion	of	the	bodies	and	the	momenta	along	the	axis	

B)-B*	and	ignore	the	intrinsic	linear	velocities	in	other	directions	or	

rotations	 of	 the	 plasma	 ingredients,	 because	 of	 their	 high	

temperature.	

● The	bodies	having	an	initial	total	momentum	𝐩 = 𝟎,	will	conserve	

it	and	after	the	collision.	The	first	collision	takes	place	between	the	

first	 infinitesimal	 slices	 dm)and	 dm*and	 the	 sum	 of	 the	 slices	

momenta	d𝐩𝟏 + d𝐩𝟐	along	the	B)-B*	axis	will	be	zero,	because	of	

the	conservation	of	the	momentum	(Fig.	2.1).	At	the	collision	the	
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velocities	of	the	slices	become	zero	and	the	masses	dm+	become	

restmasses	 dm+,.	 Because	 of	 the	 infinitesimal	 thickness	 of	 the	

slices	and	the	infinitesimal	collision	time	between	dm)	and	dm*	

the	velocities	of	the	bodies’	constituents	in	other	directions	then	

the	B)-B*	are	unchanged.		

	

	

Fig.	2.1	

The	 bodies	 do	 behave	 as	 solid.	 The	 mass-differences	 will	 be	

transformed	 into	 heat	 dQ = dm,(−1 + 1/A1 − v1*)	 and	

afterwards	into	radiation	with	v+ = 1 − 10'2	and	dm, = dm), +

dm*,,	 increasing	 the	 temperature	 of	 the	 bodies	B),	B*.The	 next	

sphere	section	will	do	the	same,	if	we	suppose		

● at	 first	 approximation	 that	 the	 deceleration	 of	 the	 bodies	 is	

cancelled	by	their	temperature	increase	and	the	increase	of	their	

energy	density.	Then	we	can	assume	that	x	is	a	constant	from	the	

begin	to	the	end	of	the	collision.	We	are	expecting	for	x	to	be	
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1 ≪ x ≤ 6,		 (2.1)	

being	 set	 for	 a	 reasonable	 velocity	 v = 1 − 10'2.	 So	 neglecting	 the	

second	order	of	10'2	we	integrate	

Q+=∫(−1 + 1/√1 − ν*)dm+ = m+,102/*/√2	GeV,	

for	each	body.	

The	energy	density	of	the	two	bodies	is	

2ρ. × 102/*	GeV4 = √2T( × 102/*	GeV4		 (2.2)	

Because	of	the	additional	heat	Q = Q) + Q*	the	plasma	flies	away,	

leaving	behind	a	vacuum	and	a	negative	pressure	p5	according	to	

cosmologists	 (see	 Sect.	 4).	 The	 volumina	of	 the	 two	bodies	 are	

V5 = V) + V*.	The	expansion	against	the	pressure	p ≈ 0	gives	rise	

to	produce	a	work	

A = (p − p5)[V − (V − V5)] = −p5V5 	> 0, p5 < 0		 (2.3)	

V − V5,	 V	 being	 the	 volume	 of	 the	 universe	 before	 and	 after	 the	

collision.	
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3. IMPERFECT INELASTIC COLLISION  
BETWEEN TWO COLD BODIES AND BIRTH  
OF SATELLITES 

If	two	bodies	B)	and	B*	with	restmasses	m,)	and	m,*,	solid	surfaces	

and	mass	densities	nearly	equal,	have	been	found	close	to	each	other,	

thus	Λ	can	be	set	to	zero	and	the	gravitational	force	attracts	and	leads	

them	to	a	lateral	frontal	collision	.Let	us	assume	that	m,) < m,*	and	

that	the	impact	is	an	imperfect	inelastic	collision	.This	means	that	the	

bodies	 lose	 energy	 and	 run	 separated	 after	 the	 impact.	 The	 total	

momentum	of	the	two	bodies	is	also	not	conserved.	

The	energy	is	transferred	mainly	into	heat	Q,	sound	and	intrincing	

deformations	 energy.	 The	 velocities	v+	and	 the	 restmasses	m,+	(I =

1, 2)	grow	up	by	gravitation	attraction	before	the	collision	and	at	the	

collision	the	velocity	of	the	body	B)changes	direction,	going	through	

zero.		

The	velocity	of	 the	body	B*	decreases	at	 the	collision	from	v*	to	

v,*.	

The	 body	B)	 starting	 from	 zero	 velocity	 moves	 behind	 the	

body	B*,	which	is	starting	with	velocity	v,* > 0.	

The	masses	grow	up	according	to	

m+ = m,+/A1 − v+*		 (3.1)	

with	the	non-relativistic	velocity	v+ ≪ c	and	c = 1,	the	velocity	of	light.		

Thus	the	mass-differences	at	the	collision	are	

m) −m,) = m,)(−1 + 1/A1 − v)*)	and	
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m* −m,* = m,*(1/A1 − v** − 1/A1 − v,** )	

and	are	transformed,	mainly	into	heat	Q+.	If	Q) + Q*	is	great	enough	

some	parts	of	the	contact	masses	vaporize,	fly	far	away	and	some	time	

after	the	impact	undercool,	begin	to	condensate	and	build	a	soft	body,	

orbiting	 around	 the	 nearest	 body	B).	 Through	 collisions	 with	 the	

matter	 of	 the	 universe	 (Eq.	 4.2)	 the	 soft	 new	 body	 takes	 the	most	

stable	sphere	form.	A	satellite	of	B)	has	been	created.	The	soft	surfaces	

of	the	bodies	B)	and	B*	become	mountains	and	canyons.
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4.THE INTERPRETATION OF THE NEGATIVE 
PRESSURE AND THE EXPANSIONS WORK 

If	one	asks	what	 is	 the	physical	meaning	of	a	negative	pressure	the	

answer	would	be	that	this	is	pure	mathematics,	or	it	is	based	on	other	

cosmological	scale.	The	relation	between	the	two	scales	is	unknown.	

Until	now	we	know	that	the	vacuum	has	a	pressure	p≈0.	We	tried	to	

give	a	physical	answer	to	the	question	of	the	negative	pressure.	

a.	 Imagine	a	reference	volume	V	of	an	inox	strong	non-elastic	outer	

wall	and	lined	to	the	inner	surface	of	it	with	a	table	of	fibrous	weak	

material	of	some	mm	thickness	of	volume	V),	not	withstanding	great	

sucking	up	 flows,	 that	 the	 final	volume	 is	decreased	to	V, = V − V).	

Thus	

V, < V		 (4.1)	

b.	 Now	connect	the	reference	volume	to	a	strong	pump,	who	is	part	

of	our	closed	system	and	try	to	suck	up	all	the	molecules	of	the	volume	

V,	out.	As	in	the	end	all	molecules	(except	the	fibrous)	are	taken	out,	

the	 reference	 volume	will	 become	V,	 and	 the	 pressure	 gets	 p = ε,		

an	infinitesimal	number,	(according	to	Nerst	it	is	impossible	to	reach	

p = 0).	

c.	 Continue	the	pumping	and	begin	to	suck	up	the	fibrous	molecules	

of	the	table	out.	As	in	the	end	all	the	fibrous	molecules	are	taken	out	

the	reference	volume	will	become	the	initial	V	and	the	pressure	gets	

p5 = ε5,	again	an	infinitesimal	number.	

d.	 The	whole	process	is	completed	quickly	by	applying	great	speeds	

of	mass	 transfer.	Because	of	 the	 isothermic	process	we	have	pV& =
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p5V.	Thus	p5 = 	pV,/	V	 < 	p.	Ιf	we	say	that	the	today’s	matter	density	

(S.	Weinberg)		

ρ- = 0.92 × 10'*7	Kg/m8		 (4.2)	

corresponds	to	pressure	p = 0	then	we	can	say	that	p5 < 	p = 0	is	a	

negative	pressure,	in	accordance	to	Eq.	2.3.	

	 We	conclude	that	a	negative	pressure	is	the	result	of	the	motion	

of	 some	 matter	 of	 the	 reference	 volume	 outwards,	 thus	 to	 an	

expansion.The	expansions-work	is	

A = −p5V) > 0.		

In	 accordance	with	 Eq.	 2.3,	where	V) ≙ V5,	 the	 vacuum	 at	 the	 Big-

Bang.	

Thus	we	come	to	the	result	that	the	cosmologists	define	the	void	room	

as	having	negative	pressure	p5,	while	the	room	with	matter	density	

ρ- = 0.92 × 10'*7	Kg/m8	is	defined	as	having	p = 0.	The	scale	of	the	

pressure	 in	 the	 cosmologist	 language	 is	 a	 simple	 shift	 downwards,	

relatively	to	the	common	pressure	p.
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5. ΤΗΕ ΒIRTH OF THE VACUUM ENERGY  
AND THE INFLATION  

The	 energy	 ΔE	 given	 by	 the	 pump	 (part	 of	 our	 closed	 system)	 to	

extract	 all	 the	 bright	 mass	 with	 energy	 density	 ρ9-	 out	 of	 the	

reference	volume	and	building	a	negative	pressure,	 is	 consumed	 to	

generate	a	heat	Q	in	the	pump	and	produce	an	expansions	energy	A.	

The	sum		

ρ59- = ΔΕ/V = (A + Q)/V + ρ9-		 (5.1)	

is	 the	 vacuum	 energy	 density	 of	 the	 bright	 matter	 and	 V	 is	 the	

reference	volume.		

We	assume	that	in	our	vicinity	is	no	dark	matter	(DM),	the	nearest	

being	at	a	distance	of	redshift	z = 0.296,	(Sec.	14)	and	is	measured	via	

the	gravitational	lenses,	as	we	will	describe	in	the	Sec.	23.	

The	middle	matter	density	is	the	sum	of	bright	matter	(BM)	and	

dark	matter	(DM).		

If	we	add	to	the	vacuum	energy	density	ρ59-	the	vacuum	energy	

density	of	the	dark	matter	ρ5:- = ρ59-ρ:-/ρ9-,	which	is	far	away	

and	 did	 not	 take	 part	 in	 the	 process,	we	 become	 the	 total	 vacuum	

energy	 density	 ρ5; = ρ59- + ρ5:-	 of	 the	 reference	 volume.	 We	

transfer	the	concept	of	the	vacuum	energy	density	ρ5;	to	the	universe.		

The	expansion	is	a	quick	process	causing	the	Inflation,	while	the	

undercooling	of	the	universe	is	a	slow	process	continuing	until	today	

(Sec.	15)	.	

Today	 the	 universe	 consists	 of	 the	 following	 energy	 densities	

(Peebles	&	Rata,	2003):	
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ρ:; ≈ 68.3%,	ρ9- ≈ 4.9%,	ρ:- ≈ 26.8%,	ρ. ≈0,	 (DE=Dark	Energy,	

BM=Bright	Matter,	DM=Dark	Matter,	R=Radiation).	The	sum	of	bright	

and	dark	matter	mean	densities	is	ρ- ≈ 0.92 × 10'*7	Kg/m8.
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6. THE EVOLUTION OF THE UNIVERSE 

6.1 The Robertson-Walker metric and the geodesic 
The	minimum	 distance	 between	 two	 near	 points	 P)	 and	 P*	 on	 the	

surface	 of	 a	 curved	worldline,	 connecting	 two	 events	 in	 spacetime	

with	no	mass	present,we	use	the	metric	for	flat	spacetime		

ds* = −dt* + dx* + dy* + dz*, (c = 1)	

where	we	adopt	the	sign	convention	of	the	Minkowski	tensor	

η<= = diag. (−1,1,1,1).	

Integrating	ds	gives	the	total	distance	along	a	worldline	AB	

Δs = ∫ √ds*9
$ .		

The	 distance	 measured	 between	 two	 events,	 A	 and	 B,	 in	 a	

reference	frame	for	which	they	occur	simultaneously	(t$ = t9)	is	the	

proper	distance		

ΔL = A(ΔS)*	

In	a	homogenous	and	isotropic	universe,	although	the	curvature	

of	 space	 may	 change	 with	 time,	 it	 may	 have	 the	 same	 value	

everywhere	at	a	given	time	since	the	Big-Bang.	

On	 the	 surface	 of	 a	 sphere	 (Fig.	 6.1),	 the	 curvature	 is	 defined	

as	K = 1/R*.	 But	 a	more	 general	 expression	 for	 curvature	 in	 a	 2-D	

space	is	

K = 8
>
lim((2πD − C?2@AB)/D8)	for	D → 0.	
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Fig.	6.1	

The	distance	between	two	points,	P)and	P*	on	a	sphere	is	given	by	

Fig.	6.2.		

Fig.6.2	

(dl)* = (Rdθ)* + (rdφ)*	

where	r = Rsinθ,	so	dr = Rcosθdθ	and		
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Rdθ = dr/cosθ = Rdr/√R* − r* = dr/A1 − r*/R*	

so	that		

(dl)* = dr*/(1 − Kr*) + (rdφ)*	

in	 terms	of	plane	polar	coordinates	r, φ	and	the	curvature	K	of	 two	

dimensional	surface.	

This	can	be	extended	to	3-D	by	changing	from	polar	to	spherical	

coordinates,		

(dl)* = dr*/(1 − Kr*) + (rdθ)* + (rsinθ	dφ)*		 (6.1.1)	

where	r	is	now	the	radial	coordinate	(M.	Pettini).	

The	above	Eq.	6.1.1	shows	the	effect	of	the	curvature	of	our	three-

dimensional	universe	on	spatial	distances.	

The	 final	 step	 towards	 the	 spacetime	 metric	 involves	 the	

inclusion	of	time.	In	an	isotropic	and	homogenous	universe,	there	is	

no	 reason	 why	 time	 should	 pass	 at	 different	 rates	 at	 different	

locations;	thus	the	temporal	term	should	be	just	cdt.	With	c = 1	the	

metric	then	becomes	

(ds)* = −(dt)* + (dl)*	

and	the	proper	distance	is	just	ΔL = A(ΔS)*	with	dt = 0.	

In	an	expanding	universe	we	write	the	radial	coordinate	r(t),	in	

the	rest	frame	of	reference,	as	function	of	the	comoving	coordinate	x	

r(t) = a(t)x.	

Because	the	expansion	of	the	universe	affects	all	of	its	geometric	

properties,	including	its	curvature,	it	is	also	useful	to	define	the	time-
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dependent	 curvature	 in	 terms	 of	 the	 scale	 factor	 and	 a	 time-

independent	constant	k	

K(t) = k/a*(t).	

With	 these	 substitutions	 for	 r	 and	 K,	 we	 finally	 arrive	 at	 the	

important	Robertson-Walker	metric	

(ds)* = −(dt)* + a*(t)[dx*/(1 − kx*) + (xdθ)* + (xsinθ	dφ)*]	

which	is	more	usually	written	in	the	form	

(ds)* = −(dt)* + a*(t)[(dr*/(1 − kr*)) + r*(dθ* + sin*θdφ*)]	

where,	through	a	new	change	of	notation,	r	now	indicates	comoving	

radial	distance.	

The	Robertson-Walker	metric	is	diagonal,	with		

g,, = −1, gCC = a*(t)/(1 − kr*),	gDD = a*(t)r*,	gEE =

a*(t)r*sin*θ	
(6.1.2)	

In	cartesian	coordinates	

ds*=g<=(x)dx<dx=,	

where	the	space	curvature	is	involved	in	the	metric	tensor	g<=.	

In	an	expanding	space	with	expansion	factor	a(t),	curvature	k	and	

a	Robertson-Walker	metric	the	squared	distance	is		

ds* = dt* − a*(t)[dx* + k(xdx)*/(1 − kx*)] =		

dt* − a*(t)gFGqdx+dxH,	
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where	the	metric	g<=	in	cartesian	coordinates	is	

with	 g+H = a*(t)[δ+H + kx+xH/(1 − k𝐱*)],	 g+, = g,+ =0,	 g,, = −1,	 gFGq =

[δ+H + kx+xH/(1 − k𝐱*)],	µ, ν = 0, 1, 2, 3,	i, j = 1, 2, 3.	

The	meaning	of	the	Robertson-Walker	metric	with	an	expansion	

factor	a(t)	can	be	clarified	in	spherical	coordinates	by	calculating	the	

proper	distance	 l	 at	 time	 t	 from	 the	origin	 to	 a	 comoving	object	 at	

radial	coordinate	r	in	spherical	coordinates	.	

If	a	particle	is	falling	opposite	to	the	z-direction	(θ = φ = 0)		

ds* = dt* − a*dr*/(1 − kr*) = dt* − dl*,	where		

dl = a(t)dr/A1 − kr*	

is	the	proper	distance	differential.	

The	proper	distance	is	then	

l(r, t) = a(t) ∫ drC
, /√1 − kr* = a(t)	

⎩
⎪
⎨

⎪
⎧ sin')r	for	k = 1

r	for	k = 0

sinh')r	for	k = −1

		

k	stands	for	the	space	curvature.	

k = 0	for	three-	dimensional	euclidean	(flat)	space.	

k = 1	for	a	spherical	space	and	

k = −1	for	a	hyperbolical	space.	

In	 a	 comoving	 object,	 r	 is	 time	 independent,	 so	 the	 proper	
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distance	from	us	increases	or	decreases	with	a(t).	The	rate	of	change	

of	any	such	proper	distance	l(t)	is		

l̇(t) = ȧ(t)l(t)/a,	

where	ȧ(t)	means	the	time	derivative	of	a(t).	

A	 particle	 at	 rest	 in	 these	 coordinates	will	 be	 described	 in	 co-

moving	 coordinates.	 Because	 g,, = −1,	 the	 quadrat	 of	 the	 proper	

time	interval	for	a	co-moving	clock	is	just	

dτ* = −g<=(x)dx<dx= = dt* − a*(t)[dr*/(1 − kr*) + r*dΩ],		

where	dΩ = dθ* + sin*θdφ*.	

The	equation	of	motion	of	freely	falling	particle	(or	photon)	in	a	

curved	space	is	the	geodesic	

d*x+/du* + ΓIJ+ (dxJ/du)dxI/du	 (6.1.3)	

where	ΓIJ+ 	is	the	Christoffel	affine	connection	and	u	a	parameter	along	

the	space-time	curve,	proportional	to	the	proper	time	τ,	or	the	length	

of	the	curve	and	x+	a	cartesian	component.	The	geodesic	means	that	

the	integral	∫dt	is	stationary	under	any	infinitesimal	variation	of	the	

path	that	leaves	the	endpoints	fixed.	

Following	S.	Weinberg	the	non-zero	components	of	the	Christoffel	

tensor	are	

Γ+H, = aȧ[δ+H + Kx+xH/(1 − Kx*)]	 (6.1.4)	

	Γ,H+ = ȧδ+H/a	 (6.1.5)	

ΓHJ+ = ΓGJF� = KgGJqx+	 (6.1.6)	

We	 can	 use	 these	 components	 of	 the	 Christoffel	 tensor	 to	 find	 the	

motion	of	a	particle	that	is	not	at	rest.	
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The	quantity	with	non-zero	mass	m,	

P = m,�g+Hdx+dxH/dτdτ		 (6.1.7)	

where	 dτ	 is	 the	 proper	 time	 dτ = dt√1 − v*	 in	 a	 locally	 inertial	

comoving	 cartesian	 coordinate	 system,	 for	which	g+H = δ+H	 and	v+ =

dx+/dt	is	the	scalar	magnitude	of	the	momentum	and	so	invariant.	

Thus	we	can	evaluate	 it	as	well	 in	comoving	Robertson-Walker	

coordinates,	 but	 also	 in	 a	 spatial	 coordinate	 system	 in	 which	 the	

particle	 is	 near	 the	 origin,	 where	 g+H = δ+H + O(x*)	 and	 we	 can	

therefore	ignore	the	spatial	components	of	the	tensor	ΓHI+ 	(= ΓGJF� = 0).	

At	first	let’s	calculate	the	rate	of	change	of	(dx+/dτ)*,	

K
KL
(dx+/dτ)* = 2(dx+/dτ)d*x+/dτ*.	

The	geodesic	(6.1.3)	yields	

d*x+/dτ* = −(2/a)(da/dt)(dx+/dτ)(dt/dτ),	

Multiplying	with	dτ/dt	gives		

d/dt(dx+/dτ) = −(2/a)(da/dt)(dx+/dτ),	

whose	solution	is		

dx+/dτ~a'*(t).	

Setting	this	in	Eq.	6.1.7	with	a	Robertson-Walker	metric	g+H = a*(t)δ+H	

we	have	

P(t)~1/a(t).		

This	 holds	 for	 any	 non-zero	mass,	 as	much	 as	 small	 it	may	 be	

compared	 to	 the	momentum.	Hence,	 however	 for	photons	both	m,	
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and	dτ	vanish,	Eq.	6.1.7	is	still	valid.	

Isotropy	 claims	 that	 the	mean	 value	 of	 the	matter	 current	 J	 of	

galaxies	vanish	and	homogeneity	that	the	mean	value	of	any	scalar	n	

to	be	 a	 function	only	of	 time,	 so	 the	 current	 J< = (J,, 𝐉)	 of	 galaxies,	

baryons	etc.	has	the	components		

J, = n(t), J+ = 0,	 (6.1.8)	

with	 n(t)	 the	 number	 of	 galaxies,	 baryons	 etc.	 per	 volume	 in	 a	

comoving	frame	of	reference.	

If	J<	is	conserved,	then	the	covariant	derivative	vanishes	

0 = J;<
< = ∂J</ ∂x< + Γ<=

< J= = dn/dt + Γ+,+ n = dn/dt + 3(da/dt)n/a.	

So	 	 n(t) = constant/a8(t).	

Similarly,	isotropy	requires	the	mean	value	of	any	three	tensor	t+H	

at	𝐱 = 𝟎	 to	be	proportional	 to	δ+H	 and	hence	 to	g+H,	which	equals	 to	

a'*δ+H	at	𝐱 = 𝟎	.		

Thus	the	energy-momentum	tensor	takes	the	form		

T,, = ρ(t), T,+ = 0, T+H = δ+Ha*(t)p(t)	 (6.1.9)	

with	p(t)	the	pressure	in	the	space.	

The	 momentum	 conservation	 law	 claims	 the	 vanishing	 of	 the	

covariant	derivative	of	the	energy-momentum	tensor	

T;<
	+< = T,<

+< + Γ=<+ Τ=< + Γ=<
< Τ+= = 0	

near	the	origin	(ΓJI+ = 0)	are	for	the	Robertson-Walker	metric	tensor	

automatically	 satisfied,	 Eq.	 6.1.9,	 but	 the	 energy	 conservation	 law	

yields	
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0 = T;<
,< = ∂Τ,,/ ∂t + Γ+H,T+H + Γ+,+ T,, = dρ/dt + 3ȧ(p + ρ)/a,	

the	continuity	equation		

dρ/dt + 3ȧ(p + ρ)/a = 0.	 (6.1.10)	

Setting	w = p/ρ	the	solution	of	the	continuity	equation	gives	

ρ(t) = ρ,a(t)'8()PQ)	 (6.1.11)	

where	 w = p/ρ	 is	 time-independent,	 corresponding	 to	 different	

epochs.	

w = −1,	corresponds	to	the	vacuum	epoch	(p = −ρ5).	At	this	epoch	

the	scale	factor	is	

a(t) = exp(Ht).	 (6.1.12)	

w = 1/3	corresponds	to	the	radiation	epoch	(p = ρ./3)	and	w = 0	to	

the	matter	epoch	(p = 0), ρ = ρ-.		

6.2 The Einstein equation 
The	 universe,	 containing	 matter	 and	 pressure	 gradients,	 having	 a	

metric	g<=	evolves	according	to	Einstein	equation	

G<= = −8πGT<=	 (6.2.1)	

where		

G<= = R<= −
1
2 g<=R,	

R<=	is	the	Ricci	tensor	and	the	scalar	R	respectively.	

R<= = ∂ΓS<S / ∂x= − ∂Γ<=S / ∂xS + Γ<TS Γ=ST − Γ<=S ΓSTT 	

Γ=U
< =

1
2 g

<S[∂gS=/ ∂xU + ∂gSU/ ∂x= − ∂g=U/ ∂xS]	
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is	the	Christoffel	affine	connection	and	T<=	is	the	energy-momentum	

tensor.	

The	nonvanishing	affine	connections	are	

Γ)), = aȧ/(1 − kr*),	Γ**, = aȧr*,	Γ88, = aȧr*sin*θ	

Γ,)) = Γ),) = Γ,** = Γ,88 = ȧ/a	

Γ**) = −r(1 − kr*),	Γ88) = −r(1 − kr*)sin*θ	

Γ)** = Γ*)* = Γ)88 = Γ8)8 = 1/r	

Γ88* = −sinθcosθ,	Γ*88 = Γ8*8 = ctgθ	

The	Ricci	tensors	being	symmetric	can	be	diagonalised,	so	

R,,⬚ = −3ä/a	

R)) = [(aä + 2ȧ* + 2k)/(1 − kr*)]	

R** = r*[aä + 2ȧ* + 2k]	

R88 = r*[aä + 2ȧ* + 2k]sin*θ.	

The	components	of	the	Robertson-Walker	metric	are	given	by	Eq.	

(6.1.2).	

For	a	comoving	observer	the	tensor	components	T,,	and	T))	of	

the	Eq.6.2.1	are	

T,, = ρ	and	T)) = pa*/(1 − kr*)	 (6.2.2)	

where	ρ	and	p	are	the	mass	density	and	the	pressure	respectively.	

The	corresponding	tensor	components	of	the	Einstein	equation	after	

rather	lengthy	derivation	are	

G,, = 3a'*(ȧ* + k),	 (6.2.3)	

And	G)) = −[2a(d*a/dt*) + ȧ* + k]/(1 − kr*)	
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With	 substitution	 of	 (6.2.2)	 and	 (6.2.3)	 in	 (6.2.1)	 we	 become	 the	

Friedmann	Eq.	

ȧ*/a* + k/a* = 8πGρ/3	 (6.2.4)	

and	the	equation		

2ä/a + ȧ*/a* + k/a* = −8πGp	 (6.2.5)	

Substracting	the	Friedmann	Eq.	from	the	Eq.	6.2.5	we	get	

ä/a = −4πG(ρ + 3p)/3	 (6.2.6)	

which	 shows	 that	 the	acceleration	of	 the	expansion	decreases	with	

increasing	pressure	and	energy	density.	

Einstein	expressed	the	space	containing	matter	density	ρ,	which	

interact	with	attraction	forces	between	them	and	pressure	gradients,	

which	creates	matter	currents,	in	the	T<=	tensor.	So	because	usually	

p ≪ ρ,	to	counterbalance	the	attraction	a	positive	pressure	p5	in	form	

of	a	cosmological	energy	density	ρW	or	vacuum	energy	density	ρ5,	as	

tensor	Λg<=	was	added	in	the	Einstein	equations	next	to	the	energy	

momentum	 tensor	 T<=.	 When	 the	 matter	 included	 in	 the	 energy	

momentum	 tensor	 disappeared	 at	 the	 Big	 Bang,	 the	 cosmological	

constant	in	the	Einstein	Eq.	remained.	

If	p5>0,	this	will	explain	the	expansion	of	the	universe.	

Setting	Λg<=	in	the	opposite	side	of	T<=	on	the	Einstein	equation,as	

it	is	usually	done,	the	positive	pressure	will	become	(Eq.2.3)	negative.	

If	we	express	the	total	energy	momentum	tensor	T<=	as	the	sum	

of	 a	 possible	 vacuum	 term	p5g<= = −ρ5g<=	and	 a	 term	T<=X 	 arising	
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from	matter	(including	radiation)	then	the	Einstein	equations	take	the	

form	

R<= − g<=RSS/2 = −8πG(T<=X − ρ5g<=).	

Thus	the	Einstein	equations	can	be	written	as		

R<= − g<=R/2 − Λg<= = −8πGT<=X 	 (6.2.7)	

where		 Λ = 8πGρ5.	

The	quantity	Λ	is	known	as	the	cosmological	constant.	

Cosmological	observations	indicate	that	Λ	is	at	least	of	the	order	

of	1.1 × 10'Y*	m'*	in	geometrical	units	(c = G = 1),	1.1 × 10'Z	Jm'8	

in	 SI	 units	 and	 6.3 × 10'((	GeV(in	 natural	 units	 (c = ♄	 = k9 = 1)	

(see	Sec.	25).	

In	 physical	 local	 problems	 with	 small	 time	 duration	 we	 can	

consider	the	universe	static,	a = 1,	and	 in	physical	problems	in	one	

small	part	of	the	universe,	the	cosmological	constant	usually	takes	the	

value	Λ = 0,	(N.K.	Spyrou).	

The	discovery	since	1998	that	the	universe	expands	accelerating	

has	brought	the	cosmology	into	a	new	era,	called	“dark	energy”	with	

energy	density	ρW.	

The	dark	energy	density	ρWwas	found	to	be	equal	to	the	vacuum	

energy	density	ρ5.		

Considering	 the	Einstein	 equation	 in	 the	 form	 (6.2.7),	 Eq.	 6.2.4	

and	6.2.6	become	

ȧ* = −k + (8πGρ − Λ)a*/3	 (6.2.8)	
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ä = −[4πG(ρ + 3p) + Λ]a	 (6.2.9)	

The	Friedmann	equation	with	the	Hubble	parameter	H = ȧ/a,	and	

the	cosmological	constant,	defines	how	the	energy	density	ρ(t)	drives	

the	universes	evolution	.	

6.3. The different energy forms ratios  
and the estimation of k 
During	the	Big-Bang	a	collision	of	stars	took	place	and	a	great	amount	

of	heat	was	released,	transforming	the	solid	masses	into	plasma	that	

flied	far	away	leaving	a	vacuum	at	collision’s	center.	

The	separation	to	different	epochs	is	a	mathematical	consequence	

of	 defining	 w	 time-	 independed.	 In	 reality	 all	 epochs	 give	 a	

distribution	to	the	following	epochs	.	

We	 define	 a	 critical	 matter	 density,	 with	 H = ȧ/a	 the	 Hubble	

constant	

ρ[ = 3H*/8πG,		

the	 today’s	 universe	 mean	 matter	 density	 and	 the	 mean	 density	

parameters	

Ω, = ρ,/ρ[,	where	ρ, = ρX + ρ.,	ΩX = ρX/ρ[,	Ω. = ρ./ρ[,		

ΩW = ρW/ρ[,	and	Ω\ = −k/a*H*.	

ΩX + Ω. + ΩW + Ω\ = 1.	

M, R, Λ, K	stands	for	matter,	radiation,	dark	energy	and	the	curvature,	

respectively.	

It	is	ρX + ρ. + ρW + ρ\ = ρ[.	

From	(6.1.11)	follows	that		
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ρX = ρX,a'8,	ρ. = ρ.,a'(,	ρW = ρW,ρ'8()PQ),	ρ\ = ρ\,a'*	and	

ρ(t) = ρX,a'8 + ρ.,a'( + ρW,a'8()PQ) + ρ\,a'*.	

This	parametrisation	has	the	advantage	of	letting	only	one	scale	

in	the	models	and	the	Hubble	constant	H.	All	οther	quantities	can	be	

given	 as	 dimensionless	 ratios.	 The	 term	 ρ[	 is	 the	 critical	 today's	

matter	density	ρ[ = 3H,*(8πG)') = 0.92 × 10'*7	Kg/m3.	

	

Today	the	pressure	is	too	small:	p/ρ	 = 10'(.	Let	us	take	p = 0.	

At	the	present	epoch	t = t,	(p = 0)	(6.2.9)	and	(6.2.8)	are	given	by	

ä = −(4πGρ,	a, + Λa,)/3,	 (6.3.1)	

ȧ* = 8π	Gρ,a,* − k	 − Λa,*/3	 (6.3.2)	

They	can	be	rewritten	in	terms	of	the	Hubble	constant	H,	and	the	

“deceleration”	parameter	q, = −äa/ȧ*,	at	t = t,	the	today’s	time.	

4πGρ,/3 = q,	H,* + Λ/3,	

k/a,* = H,*(2q, − 1) − Λ.	

Eliminating	Λ	we	become	

k/a,* = H,*(3Ω, − 2q, − 2)/2	

and	setting	Λ = 3H,*ΩW,	from	the	equations	(6.3.1)	and	(6.3.2)	we	have	

ΩW = Ω,/2 − q,.	

	

Then	k = (a,*H,*)(Ω, + ΩW − 1).	
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If:	a,*H,*(Ω, + ΩW! − 1)�

≥ 1, then	k ≥ 1	and	calibrated	k = 1

= 0, then	k = 0

	< 1, then	k < 1	and	calibrated	k = −1

	

Since	 ΩW = −q, + Ω,/2	 and	 Ω, = ρ,/ρ[,	 where	 ρ, = ρX + ρ.,	

are	measurable	 quantities,	 it	 is	 possible	 to	 determine	whether	 our	

cosmos	is	a	spherical,	flat	or	hyperbolic	one.	

We	can	of	 course	define	 these	quantities	 for	all	 cosmic	epochs,	

which	we	will	do	later	(Chapter	18)	in	order	to	estimate	numerically	

the	 age	 of	 our	 universe.	 At	 the	 same	 Chapter	 we	will	 see	 that	 the	

measurements	 give	Ω, = 0.24,	ΩW = 0.76,	 k = 0,	 indicating	 for	 the	

today’s	k = 0.	

We	can	rewrite	the	Hubble	parameter	as	

H(a)* = H,*�Ω\a'* + ΩXa'8 + Ω.a'( + ΩWa'8()PQ)�,	 (6.3.3)	

where	 the	 four	 currently	 hypothesised	 contributors	 to	 the	 energy	

density	 of	 the	 universe	 are	 curvature,	 matter,	 radiation	 and	 dark	

energy.	Each	of	the	components	decreases	with	the	expansion	of	the	

universe	(the	scale	factor	increases),	except	perhaps	the	dark	energy	

term.	 It	 is	 the	 values	 of	 these	 cosmological	 parameters	 which	

physicists	use	to	determine	the	acceleration	of	the	universe.	

The	 acceleration	 equation	 describes	 the	 evolution	 of	 the	 scale	

factor	with	time	

ä/a = −4πG(ρ + 3p)/3.	

According	to	the	theory	of	cosmic	inflation	the	very	early	universe	

underwent	a	period	of	very	rapid,	quasi-	exponential	expansion,	while	

the	time-scale	for	this	period	of	expansion	was	far	shorter	than	that	
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of	the	dark	energy-dominated	expansion.	

The	accelerating	expansion	means	that	the	second	time	derivative	

of	 the	 cosmic	 scale	 factor	 ä	 is	 positive	 which	 is	 equivalent	 to	 the	

deceleration	parameter	being	negative.	

However,	note	that	this	does	not	imply	that	the	Hubble	parameter	

is	 increasing	 with	 time.	 Since	 the	 Hubble	 parameter	 is	 defined	 as	

H(t) = ȧ(t)/a(t),	 it	 follows	 that	 the	 derivative	 of	 the	 Hubble	

parameter	is	given	by		

dH/dt = −H*(1 + q,)	

So	 the	Hubble	parameter	 is	decreasing	with	 time	 (very	slowly)	

unless	q, < −1.	Observations	prefer	q, ≈	−0.55,	which	implies	that	

dH/dt	is	negative.		

Essentially	this	implies	that	the	cosmic	recession	velocity	of	any	

particular	 galaxy	 is	 increasing	with	 time,	 but	 its	 velocity/	 distance	

ratio	(H)	is	still	decreasing.	

Thus	 different	 galaxies	 expanding	 across	 a	 radius	 of	 a	 sphere	

cross	the	surface	more	slowly	at	earlier	times.	

It	 is	 seen	 from	 the	 above	 that	 the	 case	 of	 “zero	 acceleration”	

corresponds	to	a(t)	is	a	linear	function	of	t,	q, = 0	and	H(t)~1/t.	

For	 a	 spherical	 (k = 1)	 and	 static	 (a = a] = const.	 and	 Λ = 0)	

universe	from	the	Eq.6.1.10	and	6.1.8	means	that	for	a	stable	universe	

must	

3p + ρ = 0	and	k = 8πρGa*/3.		

If	ρ = ρX + ρ5,	 (ρ5 = 0),	p = −ρ5	 it	 follows	 that	ρ- = 2ρ5	 and	ρ =

3ρ5.		

So	 a; = 1/A8πGρ5 = 1/√Λ	
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a	very	popular	solution	at	the	beginning	(Einstein	model).	

This	 was	 an	 unstable	 universe	 because	 for	 an	 infinitesimal	

positive	 disturbance	 δρ	 added	 to	 ρ5	 a;	 decreases.	 For	 a	 negative	

disturbance	added	to	ρW	a;	increases,	so	a;	does	not	remain	constant	

(Fig.	6.3).	

Fig.6.3		

To	 make	 the	 universe	 stable	 a	 cosmological	 constant	 Λ	 was	

necessary	 in	 the	 Einstein	 equations,	 something	 Einstein	 at	 the	

beginning	 did,	 but	 later	 he	 removed	 it,	 admitting	 that	 this	was	 his	

greatest	mistake.	Finally	he	added	it.	

Starting	at	a = 0	and	approaching	a;⬚,	or	starting	at	a = a;⬚	and	go	to	

infinity,	we	have	the	Eddington-Lemaitre	model.	

Starting	at	a = 0	and	diverging	to	Infinity	as	t →	infinity	we	have	

the	 Lemaitre	model	 and	 finally	 starting	 at	a = a;⬚,	 spending	 a	 long	

time	at	a;	and	then	expanding	to	infinity,	we	have	the	de	Sitter	model	

with	k = 0	and	a~e^B	(Fig	6.4).	
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Fig.6.4	
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7. THE EARLY VACUUM PERIOD 

This	period	is	estimated	in	the	time	before	T̂ ,	(H	stands	for	Higgs)	at	

temperature	T ≈ 10)*	K	(Weinberg),	where	the	neutron	was	changed	

to	 proton	 and	 electron.	 The	 Lorentz	 invariance	 of	 the	 energy	

momentum	tensor	in	a	locally	inertial	comoving	coordinate	system	in	

the	 vacuum	 dominated	 epoch	 (p = −ρ)	 requires	 that	 T<=	 in	 a	

homogeneous	 isotropic	 space	 to	 be	 proportional	 to	 the	Minkowski	

metric		

η<= = diag(−1,1,1,1),	

of	the	form	

T<= = diag(ρ, −p,−p,−p)	

In	that	epoch	obviously	was	ρ > 0.	So	because	of	p + ρ = 0,	p < 0.	

During	this	period	the	universe	was	pervaded	by	a	Higgs	field	φ	

and	an	electromagnetic	field	A<.	Τhe	density	of	this	radiation	field	as	

function	of	the	temperature	was	

ρ. = T(,	 (7.1)	

The	potential	V(φ)	of	it	sitting	at	t = 0	on	a	minimum	of	a	mexican	

hat,	Fig.	9.1,	

dφ/dt = 0,	ρ(φ) = (½)dφ/dt + V(φ).		

Therefore	

ρ.(t = 0) = V(0)~T( ≈ 10(ZGeV(.	 (7.2)	

During	 the	 inflation	 period	 the	 coefficient	 of	 the	 universe	

expansion	 increased	 as	 a(t)~exp(Ht),	 while	 H	 was	 constant.	 This	
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inflation	period	came	before	the	radiation	and	today’s	matter	epoch.	

The	value	of	 the	dark	energy	measured	 to	be	 today	≈68.3%	of	 the	

total	 energy.	 The	 bright	mass	 density	 is	 4.9%	while	 the	 dark	mass	

density	is	26.8%	and	the	radiation	energy	≈0.	During	the	expansion	

the	absolute	value	of	the	negative	pressure	became	greater	and	today	

is	≈0.	

Through	the	Higgs	mechanism	matter	stars	are	built	and	the	free	

Volume	 of	 the	 universe	 decreases.	 So	 the	 pressure	 increases.	 The	

galaxies	following	the	Herzsprung-Russell	diagram	(Sec.	20)	got	at	a	

later	time	white	dwarfs	and	black	holes,	increasing	thus	the	volume	of	

the	universe,	parallel	to	the	increasing	because	of	the	expansion.	

Until	the	building	of	atoms	after	3.8 × 10Y	years	the	universe	was	

totally	dark.
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8. A MODEL FOR THE BIG-BANG 

We	assume	that	two	bodies	B1	and	B2	have	been	found	close	to	each	

other,	so	that	the	cosmological	constant,	according	to	Sec.	2,	can	be	set	

Λ = 0	and	they	come	to	a	collision.	

8.1 Plastic collision between two cold bodies 
After	the	Big-Bang	the	temperature	was	T ≈ 10)*,	(S.	Weinberg)	and	

the	radiation	density	was	according	to	Eq.7.1	ρ. = T( ≈ 10(Z	GeV(,	in	

natural	units	 (c = ħ = ε, = k9 = 1,	 c	 the	 light	velocity,	ħ = h/2π,	h	

the	Planck’s,	ε,	the	electric	and	k9	the	Boltzmann	constant).	

Let	us	assume	a	plastic	collision	between	two	bodies	with	a	mass	

density	similar	to	that	of	the	earth	with	ρ-_ = 5.4 × 108	Kg/m8	and	

the	 energy	 density	ρ;_ = 4.6 × 10')`	GeV(.	 The	 density	 of	 the	 two	

bodies	after	the	collision	would	be	(Eq	2.2)	

ρ;_ ≈ 10')`P2/*	GeV(,	(Sec.	24).	

If	we	set	ρ. = T( ≈ 10(ZGeV( ≈ 10')`P2/*	we	take	x = 130	and	

the	velocities	of	the	two	bodies	before	the	collision	would	have	a	value	

of	v = 1 − 10')8,.	These	values	are	far	too	great	and	must	be	rejected	

because	they	don’t	fulfil	the	condition	from	Eq.2.1.	 

8.2 Plastic collision between two hot bodies 
1.	Plastic	collision	between	two	pulsars.	

Two	pulsars	(neutron	stars)	with	temperature	T = 107	K	and	energy	

ρ._ = 107GeV	will	 produce	 an	 energy	 density	 after	 the	 collision	 of	

(Eq.	 2.2)	 ρ;_ = 10*(P2/*GeV(, (c = 1).	 If	 we	 equalise	 the	 energy	

density	 at	 the	 Big-Bang	 with	 the	 heat	 energy	 density	 of	 the	 two	
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pulsars	(neglecting	their	spin	and	rotation	of	each	around	the	other)	

at	the	collision	we	get	ρ. = T( = 10(ZGeV( = 10*(P2/*GeV(	and	the	

solution	 is	 x = 48	 and	 the	 velocities	 of	 the	 two	 bodies	 before	 the	

collision	 would	 be	 v = 1 − 10'(Z.	 These	 values	 must	 be	 rejected	

because	of	the	condition	(2.1).	

	

2.	Plastic	collision	between	two	red	Giants.	

Let	us	assume	that	the	two	bodies	were	red	Giants,	their	states	were	

plasma	 with	 temperature	 T = 2 × 10ZK	 and	 energy	 ρ._ = T	GeV,	

(Atlante	del	 cielo	2008),	 then	 the	energy	density	of	 the	 two	bodies	

after	the	collision	would	be	(Eq	2.2)	ρ;_ = 3.2 × 1088P2/*GeV(,	(c =

1,	 ρ;_ =	 the	 energy	 density	 of	 the	 red	 Giants).	 If	 we	 equalise	 the	

energy	density	at	the	Big-Bang	ρ. = T( = 10(ZGeV(	with	the	energy	

density	 of	 the	 red	 Giants	 after	 the	 collision	 we	 get	 ρ. = T( =

10(ZGeV( = 3.2 × 1088P2/*	 and	 the	 solution	 is	 x = 30	 and	 the	

velocities	 of	 the	 two	 bodies	 before	 the	 collision	 would	 be	 v = 1 −

10'8,.	These	values	must	be	rejected	because	of	the	condition	(2.1).	

If	 we	 assume	 that	 at	 the	 collision	 spacetime,	 because	 of	

fluctuation,	 the	 temperature	 exceeds	 the	 mean	 value	 by	 three		

orders	of	magnitude	higher	T = 2 × 10))K,	then	we	come	to	a	value		

of	x = 6.	The	velocity	of	the	two	bodies	before	the	collision	would	be	

v = 1 − 10'7.	This	value	seems	reasonable,	according	to	the	condition	

(2.1).	What	is	left	behind	is	a	Higg's	field	φ	at	the	center	of	collision	

with	a	totally	symmetric	potential	V(φ = 0)	and	an	electromagnetic	

potential	Α<	(s.	Sect.	10).
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9. GAUGE THEORIES 

The	 electromagnetic	 field	 can	 be	 expressed	 by	 the	 potential	 A< =

(φ, 𝐀),	where	φ	 is	 a	Coulomb	potential	 and	A	 a	 vector	potential.	 It	

obeys	the	Maxwell	equation	in	vacuum		

∂<F<= = 0,	

where	F<= = ∂<Α= − ∂=Α<.	

The	Maxwell	equation	has	gauge	symmetry,	which	means	that	the	

electromagnetic	field	does	not	change	by	a	gauge	transformation		

A<(x) → A<(x) + ∂<α(x).	

The	gauge	has	to	be	fixed	for	calculating	observable	quantities.	

The	usual	fixing	is	to	adopt	the	Lorentz	gauge	

∂<Α< = 0,	 (9.1)	

which	means	∂< ∂<α(x) = 0.	

An	example	is	the	roulette	at	the	casinos.	During	the	rotation	of	

the	roulette	every	number	is	probable	but	none	is	definite.	After	the	

rest	one	number	is	definite	by	the	pointer	(symmetry	breaking,	see	

Sect.	10.1)	and	the	positions	of	the	others	are	also	definite.	

Modern	 physics	 has	 generalized	 the	 previous	 principle	 of	

symmetry	in	vacuum	and	specially	to	the	Higgs	field	φ.	The	symmetry	

must	hold	at	the	beginning	of	the	the	Big-Bang	at	time	t = 0.	At	this	

time	the	fields	ψ	must	be	locally	invariant	to	rotations	ψ → U(1)ψ =

e+Dψ	 and	 generally	 also	 to	 transformations	 ψ → SU(5)ψ	 of	 the	

symmetry	 group	 SU(5),	 which	 holds	 at	 times	 t ≈ 0.	 The	 letter	 U	

denotes	 that	U	 is	 a	 unitary	matrix.	 A	 unitary	matrix	 is	 one	 whose	
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inverse	is	equal	to	its	transpose	conjugate	(U') = U%∗).	The	letter	S	

stands	for	special,	which	means	that	the	determinant	(U) = 1.	Finally	

the	 number	 5	 defines	 the	 order	 5 × 5	 of	 the	 matrix.	 A	 Hermitian	

matrix	 H	 is	 equal	 to	 his	 conjugate’s	 transpose.	 Now	 just	 as	 any	

complex	number	of	modulus	1	can	be	written	in	the	form	e+D,	with	a	

real	θ,	so	any	unitary	matrix	can	be	written	in	the	form	

U = e+^	

where	H	 is	Hermitian	(HP = H).	Moreover,	the	most	general	U	2 × 2	

matrix	can	be	expressed	in	terms	of	four	real	numbers	a),	a*,	a8	and	θ.	

H = θ1 + 𝛕𝐚	

where	1	is	the	2 × 2	unit	matrix,	𝛕 = (τ), τ*, τ8)	are	the	Pauli	matrices,	

a	is	the	column	(a), a*, a8)	and	τa	their	dot	product.	Thus	any	unitary	

U	2 × 2	matrix	can	be	expressed	as	a	product		

U = e+De+L@ = e+^.	

The	first	factor	e+D	is	the	phase	transformation	U(1)	and	the	second	

having	determinant	1	is	an	SU(2)	transformation.	Because	the	Pauli	

matrices	are	non	commutative,	the	transformations	SU(2)	are	also	not	

commutative	(non	abelian).	The	SU(5)	group	involves	the	rotations	

U(1) = e+E,	the	SU(2)	and	the	SU(3)	groups	(see	Sect.9.2)	

SU(5) = U(1) ⊗ SU(2) ⊗ SU(3).	

9.1 Yang-Mills non abelian theory for the SU(2) group. 
In	the	weak	interaction	we	have	the	pairs	(p, n)	and	(e, ν?)	or	(µ, ν<)	

or	(τ, νL).	Αny	time	the	combination	of	the	(p, n)	pair	with	one	of	the	
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three	generations	(flavors)	of	(electron,	neutrino)-pair*.	Now	suppose	

that	we	have	 two	 spin	1/2-fields	ψ)	 and	ψ*	 four	 component	Dirac	

spinors.	The	Lagrangian,	in	the	absense	of	any	interactions,	is	the	sum	

of	their	own	Lagrangians	

L = ∑ [iψ+γ< ∂<ψ+ −m+ψ+ψ+*
+b) ],	 (9.2)	

But	we	 can	write	 the	Eq.9.2	more	 compactly	 by	 combining	ψ)	 and	

ψ*into	a	two	component	column	vector		

ψ = ¢
ψ)
ψ*
£.	

The	adjoint	spinor	is	ψ = �ψ), ψ*�	

And	the	Lagrangian	becomes	L = iψγ< ∂<ψ − ψΜψ	where	

Μ = ¢
m) 0

0 m*
£	

M	 is	 the	cross-matrix.	 In	particular,	 if	 the	two	masses	happen	to	be	

equal,	m,	Eq.	9.2	reduces	to		

L = iψγ< ∂<ψ − ψmψ,	 (9.3)	

This	looks	just	like	the	one	particle	Dirac	Lagrangian.	However,	ψ	

is	 now	 a	 two-element	 column	 vector	 and	 L	 admits	 a	more	 general	

global	invariance		

ψ → U(2)	ψ		

where	U	is	any	2 × 2	unitary	matrix	UPU = 1.	

	
*	 The	 masses	 of	 e,	 μ	 and	 τ	 are	 0.511	 MeV,	 105.7	 MeV	 and	 1777	 MeV	 respectively.	 The		
τ-electrons	were	built	obviously	at	higher	temperatures	of	the	universe. 
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In	 the	 case	where	 the	 two	 Dirac	 fields	 are	 the	 proton	 and	 the	

neutron	 the	 masses	m)	 and	m*	 are	 nearly	 equal,	 so	 the	 Eq.9.3	 is	

justified,	but	if	the	two	Dirac	fields	are	the	electron	and	the	neutrino	

the	Eq.9.3	with	m) = m?	and	m* = m= ≈ 0	guides	to	a	catastrophe.	

That	 was	 the	 reason	 which	 obliged	 Higgs,	 Englert,	 Brout,	

Guralnic-Hagen	and	Kibble	to	insist	the	symmetry	at	t=0,	demanding	

an	equality	of	the	electron	and	neutrino	masses	being	zero.	This	has	

been	generalized	to	the	quarks	(constituents	of	the	proton,	neutron	

and	mesons)	and	the	bosons	W±,	Z	 to	have	a	mass,	at	 t=0,	equal	 to	

zero,	as	is	the	mass	of	photon.		

9.2. Chromodynamics in the strong interaction 
To	conclude	this	Chapter	we	mention	that	the	SU(3)	matrix	represents	

the	strong	interaction	and	can	be	expressed	as	

SU(3) = e+^	

where	H = exp(𝐚𝛌).	

a	 is	an	eight	component	vector	and	λ	eight	3 × 3	non	commutative	

matrices	(Gell-Mann	matrices).	aλ	is	their	dot	product.		

Because	λ	matrices	 are	 not	 commutative	 the	 transformation	 SU(3)	

acting	on	three	quarks		

§

ψd).

ψd*9

ψd8_
¨ → SU(3)§

ψd).

ψd*9

ψd8_
¨	

is	 also	 non	 commutative	 (non	 abelian).The	 quarks	 have	 three	

different	colors,	red,	blue	and	green	(R,B,G)	and	belong	to	one	of	the	
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three	generations	(flavors	f = 1,2,3)	.Their	symmetry	had	not	been	in	

doubt.	 The	 binding	 force	 between	 the	 quarks	 are	 eight	 massless	

gluons.



	 51 

10. THE HIGGS-MECHANISM 

10.1 The spontaneous symmetry breaking of a real field 
In	the	Standard	Model	the	Lagrangian	for	a	real	field	φ	is	symmetric	

at	±φ	

L = 1/2[(∂<φ∂<φ − V(φ)].	

	 The	potential	V(φ) = − )
*
φ*µ* + λ*φ(/4 + V(0)	 of	 the	Higgs	

field	φ	(Higgs-Boson)	with	mass	m = µ*	has	an	unstable	minimum	at	

φ = 0.	 Τhe	 first	 term	 is	 the	 mass	 and	 the	 second	 term	 is	 the	

interaction.	The	third	term	is	the	value	of	the	potential	V(0).	Τhis	is	

equal	to	the	cosmological	constant	Λ	at	the	time	t=0.	Usually	we	start	

from	a	minimum	of	the	potential	energy,	i.e.	from	a	zero	derivative	of	

the	 potential,	 so	 the	 smallest	 perturbation	 at	 φ=0	 breaks	 the	

symmetry	 leading	 the	 potential	 to	 a	 stable	 minimum	 f ∙ i	 at	

φ = +µ/λ.This	 symmetry	breaking,	analogous	 to	 the	Lorentz	gauge	

Eq.9.1,	makes	the	calculation	of	the	observable	quantities	possible.		

10.2 Spontaneous symmetry breaking of a complex field, 
giving to the physical observables a definite value 
The	 Lagrangian	 L	 of	 a	 complex	 field	 is	 the	 difference	 between	 the	

kinetic	 term	 and	 the	 potential	 V(φ) = − )
*
φPφµ* + λ*(φPφ)*/4 +

V(0).		

L = 1/2[(∂<φP ∂<φ	 − V(φ)].	

	Usually	we	start	from	a	minimum	of	the	potential	energy,	i.e	from	a	

zero	derivative	of	the	potential,	

d*φ/dt* = 	φ(µ* − λ*φ*) = 0	
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Τhis	equation	has	the	solutions	φ = 0	and	φ = ±µ/λ	.We	interpret	the	

solution	of	the	Higgs	Boson	φ = 0	as	sitting	on	an	unstable	minimum	

at	 the	 top	 of	 a	mexican	 hat	with	 angle	 symmetry	 and	 the	 solution	

(without	restriction	of	 the	generality)	φ = µ/λ	on	the	real	axis	as	a	

stable	 minimum,	 after	 a	 spontaneous	 symmetry	 breaking,	 at	 the	

bottom	of	the	mexican	hat,	Fig	10.1.		

Fig.	10.1	

Fig.10.1	is	a	double	Figure.	At	t = 0	the	Higgs	Boson	is	situated	at	the	

top	and	at	t = Δt	lies	at	the	bottom	of	the	hat	at	φ = µ/λ.	

Then	every	physical	observable	is	definite	(see	Sect.	9.1).		
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10.3 Local gauge invariance 
Local	gauge	invariance	is	needed,	if	scalar	fields	come	together	with	

electromagnetic	fields,	with	potential	𝐴e .	Τhe	Lagrangian	has	then	the	

form	

L = )
*
(∂<φP ∂<φ +

)
*
µ*φPφ − λ*(φPφ)*/4 − F<=F<=/16π,	

where	F<= = ∂<Α= − ∂=Α<.	

	 This	 invariance	 means	 that	 you	 should	 be	 able	 to	 make	 local	

gauge	 transformations	 to	 the	 fields	 involved	 in	 the	 theory	without	

changing	 the	 physical	 laws.	 A	 such	 gauge	 transformation	 is	 the	

rotation	of	the	field	φ(x) → e+Dφ(x).	If	the	parameter	θ	depends	on	x	

then	we	call	it	local,	otherwise	we	call	it	global.	

	 In	 quantum	 field	 theory	 there	 are	 two	ways	 that	 scalar	 complex	

fields	can	show	up:	either	directly,	or	as	derivatives.	They	always	show	

up	in	pairs	or	larger	groupings,	usually	of	a	conjugate	or	a	normal	field,	

like	φPφ.	(φPis	the	hermitian	conjugate,	which	is	the	complex	conjugate	

and	transpose	of	a	four	component	column	field).	Terms	like	that	which	

involve	only	the	fields	themselves	are	always	gauge	invariant,	because	

when	 you	 make	 the	 gauge	 transformation,	 you	 get	 the	 phase	 factor	

cancelled	 out.	 But	 if	 you	 have	 a	 term	 that	 involves	 derivatives,	 like	

∂φP ∂φ,	you	get	additionally	the	derivative	of	the	phase	factor	α(x).	In	

order	 to	 keep	 the	 physical	 laws	 invariant	 we	 need	 to	 add	 to	 the	

derivatives	the	coupling	of	the	electromagnetic	potential	A<	to	the	field	

φ,	 iqA<.	 Additionally	 we	 must	 make	 the	 transformation	 A<(x) →

A<(x) + q') ∂α(x).	Thus	you	end	up	to	 the	covariant	derivative	D< =

∂< + iqA<(x),	where	the	phase	factor	α(x)	cancels	out	of	DφPDφ.	
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10.4 Τhe mass-acquiring mechanism 
The	 Lagrangian	 of	 a	 scalar	 complex	 field	 φ	 together	 with	 an	

electromagnetic	 field	 with	 potential	 A<�A = A<�	 is	 L =
)
*
(∂ −

iqA)φP(∂ + iqΑ)φ + )
*
µ*φPφ − λ*(φPφ)*/4 − F<=F<=/16π.		

	 The	exact	solutions	in	quantum	field	theory	are	possible	only	in	

special	 forms	of	 the	potential	 (f,i	V(r)~r'))	 and	mostly	 impossible.	

That's	 why,	 going	 from	 a	 known	 solution,	 f.i,	φ = µ/λ	 we	 use	 the	

perturbation	 theory	 and	 try	 to	 continue	 it	 at	 a	 neighboring	 φ).	

Defining	 the	 perturbations	η = φ) − µ/λ	 and	 ξ = φ*	 the	 Goldstone	

boson,	the	Lagrangian	becomes	

L = ®)
*
�∂<η�(∂<η) − µ*η*¯ + °−

)
)7>

F<=F<= +
)
*
±f<
S
²
*
Α<Α<³ +	

{<
S
q*η(Α<Α<) +

)
*
q*η*(Α<Α<) − λµη8 −

)
(
λ*η(} + µ(/4λ*.	

Now	 we	 must	 explain	 the	 meaning	 of	 some	 terms	 in	 the	

Lagrangian.	

There	are	:	

1. Kinetic	 terms	 involving	 two	 derivatives	 of	 the	 fields	 f.i.	

∂<ηP ∂<η.	

2. Mass	terms	involving	products	of	the	form	mgηPη,	or	m$Α<Α<.	

3. Ιnteraction	terms	involving	products	of	three	or	more	fields	of	

the	form	~A*η, η8, or	η(.	

By	an	astute	choice	of	gauge,	we	have	eliminated	the	Goldstone	

boson	 ξ	 and	 some	 offending	 terms	 in	 L:	 we	 are	 left	 with	 a	 single	

massive	 scalar	η	 the	Higgs	boson	with	mass	m = µ*	 and	a	massive	

gauge	field	A<	with	mass	m = (qµ/λ)*.	One	can	say	that	the	potential	



	 55 

Α<	has	eaten	the	Goldstone	boson.	According	to	combination	of	 the	

values	of	μ	and	λ,	have	the	different	fermions	and	bosons,	aquired	the	

right	mass.	

Just	 because	 of	 the	 change	 of	 the	 coordinates,	 a	 massless	

electromagnetic	potential	Α<	has	acquired	mass.	That	is	in	a	nutshell	

the	result	of	the	Higgs-mechanism.	

The	Higgs	boson	discovery	was	announced	by	the	ATLAS	and	CMS	

collaborations	on	July	2012	in	Large	Hadron	Collider	(LHC)	at	Geneva.	

Evidence	for	a	new	particle	with	the	mass	of	about	125	GeV	and	

the	properties	of	the	Higgs	boson	was	present	in	experiments,	where		

a.	 The	Higgs	boson	is	produced	out	of	two	gluons	via	a	quantum	loop	

process	 involving	 two	 top	 quarks.This	 production	 process	 has	 the	

largest	cross	section	at	the	LHC	(Large	Hadron	Collider),	Fig.	10.2.	

b.	 The	 second	most	 important	 process	 is	 the	 radiation	 of	W	 or	 Z	

bosons	from	incoming	quarks,	which	fuse	to	produce	a	Higgs	boson.	

c,d.	There	 exist	 two	 additional	 significant	 contributions	 of	 Higgs	

boson	production	with	a	vector	boson	W	or	Z	and	with	a	top-antitop	

(t − t)	pair.	

Fig.10.2	

			The	H-boson	decays	naturally	in	different	ways,mostly	in	b, b	quarks	

with	mean	life	time	of10'**	sec.
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11. THEORY OF SMALL FLUCTUATIONS 

Until	 now	 we	 described	 the	 universe	 as	 has	 been	 isotropic	 and	

homogenous	with	a	Robertson-Walker	metric.	

For	k = 0	we	write	the	perturbed	metric	as	

g<= = g<= + h<=,	

the	perturbed	energy	momentum	tensor	as		

T<= = T<= + 	t<=	

And	the	Ricci	tensor	as		

R<= + R<= + r<=,	

where	g<=	is	the	unperturbed	Robertson-	Walker	metric		

g,, = −1,	g,H = gH, = 0,	g+H = a*(t)δ+H, i. j	 = 1,2,3	

	and	h<= = h=<,	t<= = t=<	and	r<= = r=<	a	small	perturbation.		

	 (Here	 and	 from	 now	 on,	 a	 bar	 over	 a	 quantity	 denotes	 its	

unperturbed	value.)	

	 With	these	decompositions	and	using	the	Eq.6.1.10	and	6.1.8	(k =

Λ = 0)	the	Einstein	and	the	equations	of	of	conservation	the	energy	

and	momentum	 laws	 give	 the	 perturbation	 equations.We	 separate	

them	 in	 scalar	 δρ, δp, du…,	 vector	 𝛅𝛎, 𝐆, 𝐂…	 and	 tensor	 π<=h ,	 D<=% ,…	

(inertial	momentum,	gravitation	radiation	tensor)	perturbations.	

	 However	the	results	are	very	complicated.	

	 We	 work	 at	 the	 comoving	 coordinate	 system.	 Only	 the	 initial	

conditions	depend	on	the	direction	q	but	not	the	Fourier	components	
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δρf, 	δpf, 	δuf...	They	depend	only	on	q.	

	 The	advantage	of	the	Fourier	composition	for	instance	δρ(x, t)	(n	

is	 the	 number	 of	 independent	 solutions,	αi(𝐪)	 a	 normalized	

coefficient	of	each	solution,	depending	on	the	initial	conditions)		

δρ(𝐱, t) =»¼d8qexp(i𝐪𝐱)αi(𝐪)δρif
i

	

is	that	the	partial	derivatives	∂/∂H	are	transformed	into	coordinates	

qH.The	gradient	⛛	is	transformed	into	a	momentum	vector	q.	

	 Taking	 the	 perturbations	 infinitesimal	 we	 do	 assure,	 because		

δρfδpf ≈ 0,	 that	 no	 couplings	 appear	 between	 the	 Fourier	

components	of	different	wave	numbers.		

	 So	 the	 differential	 equations	 of	 the	 perturbed	 components	

transform	into	linear	equations.	

	 In	 the	 time	between	10jK	and	4500	K,	 the	 time	of	building	 the	

Hydrogen-atoms	we	can	take	the	hydrodynamic	limit,	where	the	rate	

of	collisions	of	photons	with	free	electrons	was	so	great	that	photons	

were	in	local	thermal	equilibrium	with	the	baryonic	plasma		

	 In	 this	 limit	 the	wavelength	 λ	 of	 the	photon	 emmited	 from	 the	

fluctuation	δρ.f	was	greater	than	the	horizon	r^,	e.g.	outside	the	time-

like	area,	(the	area	between	the	straight	lines	r^ = ±t).	For	a	detailed	

description	see	S.	Weinberg.	This	means	that	in	the	case,	where	ρ.was	

at	the	edge	of	the	light	conus,	ρ. + δρ.f	could	be	out	of	it,	Fig.11.	1.	In	

this	case	there	is	no	communication	between	the	matter	ρ-	being	in	

the	time-like	area	and	the	photon	ρ.	being	in	the	space-like	area.	This	

violates	the	logic’s	causality	condition.	

	 However	the	temperatures	of	ρ-	and	ρ.are	measured	to	be	equal.	
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	 This	was	a	major	problem	and	the	inflation	theory	was	urgently	

called	to	solve.		

Fig.	11.1	
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12. THE INFLATION THEORY  

12.1. The need of a inflation theory 
Inflation	gives	answers	 to	 several	problems	 in	Big	Bang	 cosmology	

that	were	discovered	in	the	1970.	Inflation	was	first	proposed	by	Guth	

in	1979	as	 the	 result	 of	 a	 positive	 energy	 released	 from	 falling	 the	

Higgs	field	(think	of	it	in	his	dual	form	as	matter)	from	one	unstable	

to	 another	 more	 stable	 minimum,	 Fig.10.1.	 According	 to	 general	

relativity	this	fall	generates	an	exponential	expansion	of	space.	It	was	

very	 quickly	 realised	 that	 such	 an	 expansion	 would	 resolve	 many	

other	long	standing	problems.	The	problems	arise	from	the	universe	

starting	from	finely	tuned	initial	conditions	at	the	Big	Bang	and	looks	

like	it	does	today.	

	

The	Horizon	problem	

The	horizon	problem	arises	 the	question	why	the	universe	appears	

statistically	homogenous	and	isotropic.	Without	the	inflation	theory	

and	 according	 to	 the	quantum	 fluctuation	 theory	 the	mass	 and	 the	

radiation	sources	are	found	at	not	communicating	points	of	the	light	

conus.	 In	 this	way	 the	 causal	 condition	was	 violated.	 The	 inflation	

theory,	 taking	 the	 radiation	source	 inside	 the	horizon	resolved	 this	

problem,	see	Fig.	11.1.		

	

The	flatness	problem	

In	the	1960s	became	known	that	the	density	of	matter	in	the	universe	

was	comparable	 to	 the	critical	density	necessary	 for	a	 flat	universe	

(k ≈ 0).	What	Guth	realised	was	that	during	inflation	H	would	have	
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been	 roughly	 constant,	 so	 |k|	 being	 the	 absolute	 value	 of	 k,	Ωk =

|k|/a*H*	would	have	been	decreasing	more	or	less	like	a'*.	Because	

a(t)~exp(Ht),	at	end	of	the	inflation	and	at	the	begin	of	the	radiation	

epoch,	 we	must	 conclude	 that	Ωk	 was	 negligible.	Ωk	 was	 constant	

negligible	also	during	the	whole	radiation	and	the	begin	of	the	matter	

epoch.	So	the	inflation	explains	the	today’s	flatness	problem.	

	

The	magnetic	-monopole	problem	

The	magnetic	monopole	problem,	 sometimes	 is	 called	exotic	 -relics	

problem.	

	 In	the	Grand	Unified	Theory	at	high	temperatures	(such	as	it	was	

in	the	early	universe),	the	electromagnetic	force,	the	weak	and	strong	

nuclear	 forces	are	not	 actually	 fundamental	 forces	but	 arise	due	 to	

spontaneous	symmetry	breaking	 from	a	single	gauge	 theory.	These	

theories	predict	a	number	of	heavy,	stable	particles	that	have	not	been	

observed	in	nature.	The	most	notorious	is	the	magnetic	monopole,	a	

kind	 of	 stable,	 heavy	 “charge”	 of	 magnetic	 field.	 This	 magnetic	

monopole	has	never	been	found.	

	 With	the	inflation	the	space	volume	got	so	large	and	the	density	

so	small,	that	finding	a	magnetic	monopole	(if	GUT	has	right	foreseen)	

was	a	very	difficult	dask.		

	

These	three	problems,	have	the	inflation	theory	successfully	resolved.	

What	we	know	 from	 the	 early	 time	of	 the	universe	 is	 after	 photon	

emission.		

	 All	before	that	time	is	theory	that	try	to	validate	measured	data.		
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	 There	 are	 many	 developed	 inflationary	 theories,	 but	 the	 most	

known	are	the	old	and	the	new	one.	

12.2. The old inflationary theory (Guth’s model) 
In	 the	 vacuum-era	 p + ρ = 0	 and	 there	 existed	 nothing	 but	 the	

electromagnetic	potential	and	the	Higgs	field	φ	with	whose	help	the	

energy	density	and	pressure	can	be	written	in	the	form	

ρE =
)
*
(dφ/dt)* + V(φ), pE=

)
*
(dφ/dt)* − V(φ),	

where	V(φ)	is	the	potential	having	a	rotational	symmetry	of	φ,	sitting	

on	an	unstable	minimum	at	the	top	of	a	mexican	hat,	see	Fig.10.1.	

	 The	 energy	 continuity	 equation	 dρ/dt + 3H5(ρ + p) = 0	 takes	

the	form	

d*φ/dt* + 3H5dφ/dt + dV(φ)/dφ = 0,	 (12.1)	

(we	use	now	the	index	V	instead	of	Λ),	

where	H5 = ȧ/a = A8πGρ5/3	is	the	vacuum	Hubble	constant.	

This	 is	 the	 equation	 of	 a	 particle	 of	 unit	 mass	 with	 two-

dimensional	coordinate	φ	moving	in	a	potential	V(φ)	with	a	frictional	

force	−3Hdφ/dt.	

The	possibility	of	an	early	value	of	V(φ)	to	be	constant	was	it	to	

be	sitting	on	a	local	minimum	of	the	form	

V�φ(t = 0)� = − )
*
µ*φ* + S"E#

(
+ V(0).		

The	symmetry	breaking	while	falling	to	a	new	minimum	φ = µ/λ	

causes	an	exponential	growth	of	 the	Robertson	Walker	 scale	 factor	

a(t)~exp(Ht)	 as	 solution	of	 the	Friedmann	equation	 for	k = 0.	 The	
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exponential	growth	followed	an	expansion	like	that	of	today.	

The	basic	idea	of	the	inflationary	theory	of	Guth	is	that	the	cosmos	

will	undercool	staying	at	the	unstable	minimum	at	φ = 0	for	a	time	Δt,	

Fig.	 10.1.	 As	 the	 very	 early	 universe	 further	 cooled	 at	 the	 stabler	

minimum	 φ = µ/λ,	 transforming	 his	 potential	 energy	 into	 kinetic	

energy	 of	 the	 walls.	 In	 the	 new	 minimum,	 through	 the	 Higgs	

mechanism,	bubbles	are	built,	which	escaped	via	quantum	tunneling.	

Bubbles	 at	 the	 new	minimum	 form	 a	 sea	 expanding	 exponentially.	

Guth	recognised	that	this	model	was	problematic	because	the	bubble	

sea	did	not	reheat	properly.	When	the	bubbles	nucleated,	they	did	not	

generate	 any	 radiation.	 Radiation	 could	 only	 be	 generated	 by	

collisions	between	bubble	walls.	But	the	inflation	lasting	long	enough,	

the	collisions	became	exceedingly	rare	to	reheat	(Hawking).		

The	 region	 outside	 the	 bubble	 is	 casually	 decoupled	 from	 the	

interior	of	the	bubble.	

Outside	the	bubbles	the	universe	underwent	an	inflation.	

The	creation	and	the	growth	of	the	bubbles	cannot	keep	up	with	

the	inflation	of	the	regions	between	the	bubbles.	Then	concentrations	

of	bubbles	form,	which	are	few	bubbles	pro	domain.	This	way	a	very	

inhomogeneous	 universe	 appears,	 quite	 in	 contrast	 to	 what	 we	

observe.	This	made	necessary	to	change	the	old	inflationary	theory	in	

some	points	and	so	we	came	to	the	new	inflationary	theory.	

12.3. The new inflationary Theory 
Linde	 1982,	 Albrecht	 and	 Steinhart	 1982	 suggested	 a	 way,	 which	

keeps	 the	good	aspects	of	 the	old	model	and	changes	 it	 so	 that	 the	

theoretically	foreseen	properties	match	with	the	observed	ones.	
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The	central	idea	of	this	theory	is	a	very	special	way	of	symmetry-	

breaking	which	results	in	that	the	whole	observable	universe	evolved	

out	of	a	single	droplet	Fig.12.1.	

Fig.12.1	

The	 new	 conception	 is	 to	 have	 a	 plunge	 of	 the	 expected	mean	

value	(〈φ〉)	of	the	Higgs	field	from	φ = 0	to	some	small	initial	value	

φ+ < σ	 by	 quantum	 mechanical	 tunneling	 or	 through	 thermal	

fluctuations.		

Starting	 then	 from	φ+	 the	Higgs	 field	 follows	 the	classical	Klein	

Gordon	equation	

(∂<φ	 ∂<φ) = −dV(φ)/dφ,		

So	the	energy	continuity	equation	(6.1.10)	takes	the	form	

d*φ/dt* + 3Hdφ/dt = −dV(φ)/dφ.	

This	equation	should	be	viewed	as	an	equation	of	expectation	values	

φ = 〈Φ〉.	
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For	a	SU(5)	gauge	theory	the	order	parameter	is	a	set	of	scalar	fields	

Φl, α = 1, 2, … , 24.	

There	 are	 5* − 1 = 24	 generators,which	 we	 call	 τl	 in	 the	

fundamental	 representation.	 These	Φl	 are	 24	 traceless	 Hermitian	

5 × 5	 matrices.	 One	 can	 write	 down	 a	 potential	 V(〈Φ〉)	 for	 〈Φ〉 =

〈Φlτl〉.	

This	is	called	Georgi-Glashow	model	(M.	Schwartz)		

The	number	of	massless	gauge	bosons	Α<l 	 is	determined	by	the	

subgroup	of	SU(5)	that	is	unbroken	at	this	vacuum	expectation	value.	

Αfter	symmetry	breaking	we	have	SU(5) = SU(3) ⊗ SU(2).	

The	 gauge	 symmetry	 SU(3)	 consists	 of	 three	 quark	 fields	(u, d, s),	

which	exists	in	three	colour	states	and	the	electron,	neutrino	(τ', νL)	

and	proton,	neutron	(p, n),	which	in	SU(2)	exists	in	two	states.	Thus	

we	have	the	SU(5)	matrix	

SU(5) =

⎝

⎜
⎛
x x x o o
x x x o o
x x x o o
o o o 𝐨 𝐨
o o o 𝐨 𝐨⎠

⎟
⎞
	

The	SU(3)	subgroup	on	the	top	left	build	a	3 × 3	block	of	quarks	

in	 three	 colors	 and	 the	 SU(2)	 subgroup	 on	 the	 bottom	 right	2 × 2	

block	of	(τ, νL)	and	(p, n).	This	SU(5)	symmetry	is	unbroken	and	each	

component	 of	 it	 commutes	 with	 each	 other.	 In	 order	 to	 take	 a	

minimum	for	the	potential	we	must	diagonalize	the	expectation	value.	

This	is	possible	because	〈Φ〉	is	Hermitian	(G.Boerner).	

In	 addition	 to	 the	 block-diagonal	 SU(3)	 and	 SU(2)	 generators,	

there	 is	 also	 the	 generator	 corresponding	 to	φ,	who	 generates	 the	
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U(1)	subgroup.	

There	are	two	amazing	things	about	this	type	of	grand	unification.	

The	gauge	coupling	constants	are	related	and	must	equalize	at	high	

temperatures	and	 the	quantum	numbers	of	 the	quarks	and	 leptons	

(generations	and	colors)	are	all	existent	in	the	SU(5)	group.	

The	potential	V(φ)	at	t=0	is	taken	to	be	(Coleman	and	Weinberg	

1982)	

V(φ) = *Y
)7
α*(φ(ln(φ/σ) + )

*
(σ( − φ()),	 (12.2)	

Equation	 (12.1)	 for	 the	Higgs	 field	 can	 be	 coupled	 to	 the	 radiation	

density	ρ. = T(	(Albrecht	et	al	1982).	

	 A	 friction	 term	δ = aα*(dφ/dt)*φ, (a = const. )	 is	 added	 to	 the	

continuity	Eq.12.1.	Thus	

d*φ/dφ* + 3Hdφ	/dt = −dV/dt − δ,	 (12.3)	

H* = 8πρ5G/3.	 (12.4)	

For	 H	 the	 vacuum	 constant	 scale	 provides	 a	 reasonable	

approximation.	

The	system	of	equations	(12.2),	(12.3)	and	(12.4)	can	be	solved	

numerically.	 For	 the	 classical	 evolution	 with	 initial	 values	φ(0) ≈

φ+ ≈ 10ZGeV	and	dφ/dt = 0	(t = 0, φ	 = 0	freezing	at	the	minimum)	

the	solution	is	shown	in	Fig.	12.1.	

The	results	show	that	there	is	a	phase	φ = φ+with	stagnate	and	a	

phase	with	exponential	expansion	a~exp(Ht),	(de	Sitter	model)	which	

lasts	until	Ht = 190	and	produces	an	inflation	of	a = e)j, = 10Z8	large	

enough	to	achieve	all	the	observed	things	for	that	inflation	picture.	

A	bubble	of	initial	size	of	order	H5') = 10'*7	cm	is	then	stretched	
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out	to	a	dimension	H5') = exp(190) = 10Z8	cm.	

With	an	estimated	radius	of	the	universe	(B.F.	Schutz	)	of	10*Z	cm,	

we	 live	 inside	 an	 inflated	 bubble.	 All	 the	 things	 we	 can	 observe	

comprise	 just	 a	 tiny	 part	 of	 the	 universe.	 The	 entropy,	 horizon,	

magnetic	 monopole	 problems	 and	 flatness	 are	 solved,	 via	 the	

inflation.	

We	can	see	from	Fig.12.1	that	φ	stays	constant	(φ = φ+)	for	a	time	

and	then	increases	executing	damped	oscillations	with	a	period		

τmnA = 4.8 × 10'(H5').	

We	have	not	yet	reached	the	stable	minimum	φ = σ.	

A	very	critical	parameter	in	the	solutions	is	the	starting	value	φ+.	

Only	 for	 φ+ ≤ 7 × 10Z	 GeV	 is	 sufficient	 inflation	 possible.	 As	 a	

consequence	a	mass	density	ρ5	produced	through	the	Higgs	field	has	

to	satisfy	the	condition	ρ5 ≤ ρ[ = 0.92 × 10'*7kg	m'8.		

The	inflationary	model	requires	ρ5	to	be	close	to	zero,	an	extrem	

fine	tuning	with	respect	to	the	GUT	scale	.	

A	small	effective	mass	density	term	would	destroy	the	inflation.	

Within	 the	usual	GUT	 theories	 such	mass	 terms	arise	naturally	

from	the	coupling	of	the	Higgs	field	φ	with	the	electromagnetic	field	

A<	of	the	spacetime.	

As	a	conclusion,	neither	the	old	nor	the	new	inflationary	theory	

provides	an	adequate	answer	to	the	observations.	

So	although	every	year	a	new	inflationary	model	is	proposed,	the	

problem	 remains	 until	 today	 unresolved.We	must	 be	 satisfied	 only	

with	the	observational	data.
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13. THE RADIATION EPOCH 

This	 epoch	 (p=ρ/3)	 followed	 the	 inflation	 period.	 The	 particles	

(photons	and	neutrinos)	built	through	electron-	position	annihilation	

to	reheat	the	universe	were	relativistic	and	the	expansion	coefficient	

a(t)~√t, ρ.~a'(~t'*, t~a*	 (13.1)	

The	deceleration	value	was	q, = 1	and	the	Hubble	parameter	H =

1/2t, 	H*~ρ. = T(	

The	temperature	at	this	era	began	at	10),K	and	ended	at	4500K,	

at	the	equality	of	ρ.with	ρ-.	

13.1. Nucleosynthesis 
Let	us	consider	what	happened	to	nucleus	during	this	epoch.	

The	weak	interaction	allow	two	bidirectional	collision	reactions	

between	nucleons	and	leptons:	

𝑛 + 𝜈 ⇌ 𝑝 + 𝑒', 𝑛 + 𝑒P ⇌ 𝑝 + 𝜈,	 (13.2)	

and	a	decay	reaction	in	one	direction	and	a	three	body	reaction	in	the	

other	direction	:	

𝑛 ⇌ 𝑝 + 𝑒' + 𝜈,	 (13.3)	

where	ν = ν?	the	neutrino-partner	of	the	electron;	the	other	flavors	

(µ, τ)	do	not	contribute	at	these	low	temperatures	k9% ≪ mo	of	this	

epoch.	So	because	of	 the	great	difference	 in	the	masses	of	nucleons	

and	leptons	the	nucleon	mass	mo	can	be	treated	as	essentially	at	rest.	

The	initial	and	final	 lepton	energies	after	the	collision	are	therefore	

simply	related	by		
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E? − E= = Q	for	n + ν ⇌ p + e',	

E= − E? = Q	for	n + eP ⇌ p + ν,	

E= + E? = Q	for	n ⇌ p + e' + ν,	

where	Q = mo −mp = 1.293	MeV.	

a.		 The	reaction	13.2.	The	total	rates	λ(p → n)	and	λ(n → p)	are	

known	to	the	elementary	particle	physicists	and	their	ratio	for	a	time	

independent	temperature,	equal	to	the	neutrino	decoupling	of	the	

electron	T=	is		

λ(p → n)	/	λ(n → p) 	= exp(−Q/k9T=)	.	

Τhe	 ratio	Xo	 of	 the	 neutrons	 to	 the	 sum	 of	 neutrons	 and	 protons,	

(Xo + Xp = 1)	can	be	calculated	from	the	differential	equation		

dXo/dt = −λ(n → p)	Xo 	+ λ(p → n)(1 − Xo).	

The	solution	of	it	that	is	time	independent	expressed	as	

Xo/Xp = Xo/(1 − Xo) = exp(−Q/k9T)		

It	 is	 the	 inequality	 of	 T	 and	 T=	 as	 the	 time	 dependence	 of	 the	

temperature	 that	 drives	Xo/Xp	 away	 of	 its	 equilibrium	 value	 from	

Eq.13.2.	

	 For	k9T ≫ Q = 1.293	MeV	we	can	set	Q = m? = 0, T= = 0	and	get	

λ(p → n) 	= 	λ(n → p) 	= 0.4(T/10),K)Ysec'),	(S.	Weinberg).	

The	time	t ≈ 1/2H~T'*	and	the	ratio	λ/H	 = 0.8(T/10),K)8.	At	T =

1.08 × 10),K, λ/H = 1.	

So	nuclei	are	built	by	a	chain	of	two	body	reactions:	first	

p + n → d + γ,	then	d + d → He8 + p	and	d + d → He8 + n	
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	and	next	

d + He8 → He( + n		and		d + He8 → He( + p.	

The	nuclear	reaction	that	built	up	He(	 from	free	nucleons	(first	

reaction)	at	T ≈ 10jK	was	not	perfect	efficient	but	 left	over	a	small	

residue	of	 light	elements,	H*,	H8,	He8, Li`	 and	Be`.	The	nuclei	of	H8	

decayed	 later	by	βP	 emission	 to	He8	 and	 the	nuclei	of	Be`	decayed	

later	 by	 electron	 capture	 to	Li`,	 leaving	us	with	 atoms	H*,	He8,	Li`,	

He(and	protons.		

A	little	later	than	1.08 × 10),K	at	temperatures	between	10),	and	

3 × 10jK	 the	 two	 body	 electron-proton	 conversion	 reaction	 rates	

became	negligible,	due	partly	to	disappearance	of	electron-positron	

pairs,	because	of	the	reheating	of	the	universe.	

The	conversion	of	neutrons	to	protons	eventually	was	ceased	by	

the	formation	of	stable	nuclei	(He().The	density	at	this	temperature	is	

too	low	for	any	but	two	body	collision	reactions	to	compete	with	the	

expansion	rate.	

	

b.	 The	 reaction	 (13.3).	What	 remained	was	 the	decay	of	neutrons	

with	a	mean	life	time	τ = 885.7	sec,	so	the	neutron	fraction	became	

proportional	to	exp(−t/τ).	

13.2. Baryon and lepton synthesis 
As	described	in	the	Sec.	10	about	the	function	of	the	Higgs	mechanism	

the	Higgs	field	(boson)	produces	from	the	electromagnetic	potential	

A<	electrons,	quarks	and	their	antiparticle.	The	proton	is	built	 from	

three	quarks	the	uud,	the	neutron	from	the	quarks	udd	and	so	on.	The	
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meson	πP	from	the	quarks	ud	and	the	meson	D,	from	the	quarks	cu.	

The	mediators	of	 the	weak	 interaction	WP,	W'and	Z	have	also	

become	mass	through	the	Higgs	boson.	They	have	been	discovered	at	

CERN	 in	 1983,	 have	masses	mq = 80.4	GeV,mr = 91.2	GeV	 and	 all	

three	spin	1,	as	the	γ	quantum,	mediator	of	the	electromagnetism.	

As	example	we	consider	the	inverse	muon	decay	

ν< + e' → µ' + ν?	

mediated	through	the	W'	boson.		

The	positively	charged	current	 j<P = esγ<νs	is	mediated	through	the	

WPboson,while	the	scattering	process	

ν< + e' → ν< + e'	

is	mediated	through	the	neutral	Z	boson.	

In	the	cases	of	leptons,	the	couplings	to	W±	takes	place	strictly	within	

a	particular	of	the	three	generations	I,	II	and	III	(flavors)	

	(𝜈t , 𝑒), (𝜈e , 𝜇), (𝜈u, 𝜏).	

Τhe	corresponding	generations	(flavors)	for	the	quarks	is	similar	

	(u, d), (c, s), (t, b).		

Each	quark	flavor	comes	in	three	colors	red,blue	and	green.	

Then	a	state	can	be	written	in	a	row	form		

ψ = (ψd., ψd9, ψd_), f = 1,2,3.	

The	binding	force	between	the	quarks	are	eight	massless	gluons	

g+,	i = 1,2, … ,8
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14. MATTER EPOCH 

The	matter	dominated	epoch	

(p = 0), a(t)~t
*
8, ρ-~a'8, H = 2/3t.	

The	 ending	 of	 the	 radiation	 era	 is	 a	 virtual	 one	 meaning	 zero	

existence	of	other	forms	of	energy.	The	today's	era	is	a	mixture	of	the	

bright,	dark,	radiation	and	vacuum	energy.	The	dark	matter	can	only	

be	 estimated	 through	 gravitational	 lenses.	 The	 first	 matter	 were	

electrons,	 positrons,	 quarks,	 and	 from	 them	 protons,	 neutrons,	

mesons	and	the	visible	H	atom.	The	building	of	atoms	was	the	end	of	

the	darkness	epoch,	at	t = 380000	years.	Photons	began	to	be	emitted	

from	different	positions	of	 the	 cosmos	and	 reached	us.	The	 today's	

matter	density	is	

ρ = ρW + ρ. + ρX		

Where	ρW	 is	the	vacuum,	ρ.	the	radiation	and	ρX	the	sum	of	visible	

(atoms	 with	 baryons	 and	 electrons)	 and	 dark	 matter,	 ρX = ρ9 +

ρ:.	Today’s	 measurements	 give	 the	 value	 ρX ≈ 31.7%.	 Further	

detailed	measurements	show	that	ρ9 ≈ 4.9%	and	ρ: ≈ 26.8%.	These	

values	are	powerfully	reinforced	by	observations	of	the	anisotropies	

in	 the	 cosmic	microwave	background	Fig.	 21.2,	 (G.	 Boerner).	 If	 the	

dark	matter	is	so	dominant,	arises	the	claim	to	know	the	properties	

and	its	constituents.	

We	know	that	this	matter	is	dark,	in	the	sense	that	it	does	not	act	

significantly	 with	 radiation,both	 because	 we	 don’t	 see	 it,	 but	 also	

because	it	has	not	lost	its	kinetic	energy	sufficiently	to	relax	into	the	

discs	of	galaxies,	as	the	baryonic	matter.	This	means	in	particular	that	
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these	 particles	must	 be	 electrically	 neutral.	 Detailed	 studies	 of	 the	

dynamics	of	the	galaxy	clusters	indicate	that	the	dark	matter	particles	

must	also	be	 cold,	 in	 the	 sence	 that	 their	velocities	are	highly	non-

relativistic.	

Following	S.	Weinberg	(the	study	of	a	double	galaxy	1	E0657-558	

(the	 “bullet	 cluster”)	 with	 z = 0.296	 has	 provided	 vivid	 direct	

evidence	 of	 the	 existence	 of	 dark	 matter,	 which	 has	 gravitational	

interactions	with	itself	or	with	ordinary	baryonic	matter.	The	galaxies	

of	this	cluster	are	mostly	grouped	into	two	distinct	subclusters,	while	

hot	 gas	 (observed	 through	 its	 emmision	 of	 X-rays)	 is	 concentrated	

between	these	subclusters.	The	interpretation	is	that	two	clusters	of	

galaxies	have	collided;	the	galaxies	which	have	little	chance	of	close	

encounters	have	been	attracted	and	going	through	each	other	without	

interaction	continued	on	their	original	paths,	while	the	two	clouds	of	

hot	 gas	 that	 previously	 accompanied	 them	 have	 collided	 and	were	

encircled	 and	 stabilized	 because	 of	 the	 cosmological	 constant	 Λ	 in	

form	of	the	pressure	of	the	hot	gas	to	the	center	of	the	double	cluster.	

The	ratio	of	the	mass	in	hot	gas	to	the	mass	in	all	matter	is	estimated	

to	be	about	1/6,	in	line	with	the	value	Ωv/ΩX	previously	inferred	from	

measurements	of	deuterium	abundance	and	luminosity	distance	as	a	

function	 of	 redshift,	 or	 from	 anisotropies	 in	 the	 cosmic	microwave	

background).	

The	pressure	of	the	hot	gas	had	canceled	the	attraction	between	

the	two	subclusters	of	the	dark	matter,	holding	them	in	distance.	It	is	

found	that	most	of	the	dark	matter	is	not	associated	with	the	hot	gas.	

Any	 dark	 matter	 component	 is	 a	 downgrading	 free	 gas,	 while	
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dissipative	effects	can	convert	the	kinetic	energy	of	baryonic	matter	

into	radiation.	Radiative	cooling	then	allows	the	baryonic	matter	to	

sink	 to	 the	 center	of	 the	 collapsed	 configuration,	while	 the	 initially	

well-mixed,	dark	matter	component	separates	and	form	an	extended	

halo	around	the	central	condensation.	

If	 the	 dissipative	 collapse	 of	 the	 baryonic	 matter	 is	 halted	 by	

angular	 momentum,	 a	 disc	 is	 formed.	 If	 star	 formation	 stops,	 the	

dissipative	collapse	of	baryons,	form	a	spherical	system.		

The	 total	 matter	 density	 is	 mapped	 out	 through	 its	 effect	 in	

gravitationally	deflecting	 light	 from	more	distant	galaxies	along	the	

same	line	of	light,	(see	Sec.	23).	

Elementary	 particle	 theory	 offers	 several	 candidates	 for	 the	

particles	of	the	cold	dark	matter.	A	great	goal	 is	to	determine	these	

particles.
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15. PROCESSES DURING  
THE TEMPERATURE FALL 

After	the	time	zero	of	the	Big	-Bang	the	temperature	began	to	fall.	

At	symmetry	breaking	the	temperature	is	estimated	to	be	10)*K.	

At	the	inflation	period	the	universe	undercooled.	At	10)*	tο	10))	

appeared	 the	 τ	 fermions	 with	 mass	 in	 equilibrium	 with	 the	 left	

neutrinos	νL	and	the	τ	antifermions	with	mass	in	equilibrium	with	the	

right	 antineutrinos	 νL.	 Later	 appeared	 the	 μ	 fermions	 and	 µ	

antifermions	with	mass	and	in	equilibrium	with	the	neutrinos	ν<	and	

ν<	 with	 the	 same	 helicity	 as	 the	 τ	 generation.	 At	 10),K	 began	 the	

decoupling	of	the	left	neutrinos	ν?	of	the	electrons.	Later	at	T ≈ 10j	to	

10),K	 began	 the	 reheating	 of	 the	 universe	 through	 fermion-

antifermion	annihilation.	The	radiation	era	began	at	T ≈ 10ZK	until	

the	equilibrium	of	radiation	and	matter	energy	density	at	4000	K.	

The	building	of	H-atoms	began	at	4500	K.	At	3000	K	was	the	last	

scattering	 of	 photons	 to	 arrive	 at	 us	 as	 microwave	 of	 13	 mm	

wavelength.	

Now	 we	 will	 look	 back	 when	 the	 temperature	 was	 between	

10(and	10))K	which	is	low	enough	so	that	τ − τ,	muon-antimuon	and	

hadron-antihadron	pairs	were	not	longer	being	produced	.	

Following	 (S.	 Weinberg),	 (there	 are	 two	 circumstances	 that	

greatly	simplify	this	task.	The	first	is	that	the	collision	rate	of	photons	

and	electrons	and	other	charged	particles	during	this	era	was	so	much	

greater	than	the	expansion	rate	of	the	universe	that	the	photons	and	

charged	 particles	 can	 be	 assumed	 to	 have	 been	 in	 thermal	
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equilibrium,	with	a	common	falling	temperature.	At	significantly	early	

times	even	the	neutrinos	and	perhaps	the	cold	dark	matter	particles	

were	 also	 in	 thermal	 equilibrium	 with	 the	 photons	 and	 charged	

particles.	 Later	 when,	 they	 no	 longer	 collided	 rapidly	 with	 other	

particles,	they	can	be	treated	separately	as	free	particles.	The	other	

circumstance	is	that	the	number	density	of	baryons	is	so	much	less	

than	the	number	density	of	photons	that	we	can	ignore	the	chemical	

potential	 associated	 with	 the	 baryon	 number.	 Also	 because	 the	

electron/photon	 number	 ratio	 is	 so	 small	 now,	 it	 is	 reasonable	 to	

assume	 that	 the	 universe	 has	 always	 had	 a	 very	 small	 net	 lepton	

number	density	per	photon.	This	means	that	even	at	temperatures	of	

order	10),K	the	energy	density,	the	pressure	and	the	entropy	density	

were	functions	of	the	temperature	alone.	

To	have	an	insight	of	the	thermal	history	is	necessary	to	look	at	

the	thermodynamics	and	statistical	mechanics	of	this	sort	of	matter,	

in	thermal	equilibrium	with	negligible	chemical	potentials.	

The	condition	of	thermal	equilibrium	tells	us	that	the	entropy	in	

a	co-moving	volume	is	fixed	

s(T)a8 = constant.	

The	second	law	of	thermodynamics	says	that	any	heat	change	dQ	in	a	

system	of	volume	V	produces	a	change	in	the	entropy	given	by	

dS = dQ/T = (dU + p(T)dV)/T,		

where	S = s(T)V	and	U = ρ(T)V.	

Equating	the	coefficients	of	dV	gives	our	formula	of	the	entropy	

density	
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𝑠(𝑇) = [𝜌(𝑇) + 𝑝(𝑇)]/𝑇	 (15.1)	

Also	equating	the	coefficients	of	VdT	and	using	Eq.15.1	give	the	

law	of	conservation	of	energy	

Tdp(T)/dT = ρ(T) + p(T).	

With	 equal	 numbers	 of	 particles	 and	 antiparticles	 the	 number	

density	 n(p)dp	 of	 fermions	 (such	 as	 electrons)	 or	 bosons	 (like	

photons)	of	mass	m	and	momentum	between	p	and	p + dp	is	given	by	

the	 Fermi-Dirac	 or	 Bose-Einstein	 distributions	 (with	 zero	 chemical	

potential)	

n(p, T) = [4πgp*/(h8]x[1/(exp(Ap* +m*/k9T) ± 1]	

where	g	is	the	number	of	spin	states	of	the	particle	and	antiparticle	

and	 the	 sign	 is	+	 for	 fermions	 and	−	 for	 bosons.	 For	 instance,	 for	

photons	g = 2,	because	photons	have	spins	±1	and	they	are	their	own	

antiparticles,	while	 for	 electrons	 and	positrons	g = 4,	 because	 they	

have	 two	 spin	 states	 ±½	 and	 electrons	 and	 positrons	 are	 distinct	

particles.	The	energy	density	and	pressure	of	a	particle	of	mass	m	are	

given	by	the	integrals	

ρ(T) = ∫ n(p, T)w
, dpAp* +m*,		

p(T) = ∫ n(p, T)w
, dpp*/3Ap* +m*.		

(15.2)	

The	entropy	density	of	this	particle	is	then	given	by	the	Eq.15.1	as	

s(T) = )
%
n(p, T)dp[Ap* +m* + p*/3Ap* +m*]		 (15.3)	

In	particular,	for	massless	particles	Eq.15.2	gives	
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ρ(T) = g ∫ 4πp8w
, dph'8[1/exp(p/k9T) ± 1] 	=		

= ga9T(/2	for	bosons	and	

= 7ga9T(/16	for	fermions	= 7/8[ρ(T)]	for	bosons.		

At	this	radiation	era	p(T) = ρ(T)/3	and	s(T) = 4ρ(T)/3T.	

During	 this	 period	 of	 thermal	 equilibriun	 the	 temperature	 as	

function	of	 the	 time	 is	governed	by	 the	Eq.15.1	and	 the	Friedmann	

Eq.6.2.4	with	k = Λ = 0	

ȧ*/a* = 8πGρ(t)/3.	

Combining	these	and	integrate	gives		

t = −∫(ds/dT) dT/(s(T)A24πGρ(T)) + constant		 (15.4)	

With	relativistic	particles	and	m = 0	the	entropy	and	energy	density	

are	given	by	

s(T) = 2Na9T8/3	

ρ(T) = Na9T(/2	

for	bosons	and	fermions,N	is	the	particle	types	counting	particles	and	

antiparticles	and	each	spin	state	separately	and	with	an	extra	factor	

7/8	for	fermions.	

The	time	as	function	of	the	temperature	was		

t = A3/16πGNa9T'* + constant,		 (15.5)	

where	N	is	the	number	of	particles	and	antiparticles	for	bosons	and	

fermions	and	a9the	radiation	energy	constant).		

Now	start	at	 a	 time	when	 the	 temperature	was	around	10))	K,	

which	is	in	the	range	m< ≫ k9 ≫ m? ≫.	Even	though	it	was	too	cold	
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at	this	time	for	reactions	of	the	τ	or	μ	leptons	like		

ν< + e → µ + ν?	 or	 νL + e → τ + ν?,	 the	 μ	 and	 τ	 neutrinos	 and	

antineutrinos	were	 kept	 in	 thermal	 equilibrium	 by	 neutral	 current	

reactions,	 like	 neutrino-electron	 scattering	 or	 annihilations	 eP +

e' ↔ ν + ν.	Hence	the	constituents	of	the	universe	at	this	time	were	

photons	 with	 two	 spin	 states	 plus	 three	 species	 of	 neutrinos	 and	

antineutrinos,	each	one	(left	for	ν,	right	for	ν)	spin	state,	plus	electrons	

and	 antielectrons	 (positrons),	 each	 with	 two	 spin	 states,	 all	 in	

equilibrium	and	all	highly	relativistic,	giving	

N = 2 + 7(6 + 4)/8 = 43/4.	

So	that	Eq.	15.1	gives	in	cgs	units	

t = 0.994	sec(T/10),K)'* + constant.		

For	 instance,	 with	 muons	 ignored	 and	 the	 mass	 of	 electrons	

neglected,it	took	0.0098	sec	for	the	temperature	to	drop	from	a	value	

10)*K	to	10))K,	another	0.998	sec	to	drop	to	10),K	and	another	167	

sec	to	drop	to	10jK.
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16. THE COSMOLOGICAL REDSHIFT 

Imagine	a	ray	of	light	emitted	at	a	distance	distance	r	from	the	earth	

(index	e)	coming	to	us	along	the	z-axis	(θ = φ = 0).	

In	spherical	coordinates	and	a	Robertson-	Walker	metric	

ds* = 0, dt = −a(t)dr/√1 − kr*.	

Writing	 Δt, = a(t,)	Δr/√1 − kr*	 and	 Δt] = a(t;)	Δr/√1 − kr*	 and	

divide	them	one	takes	

Δt,/Δt; = a(t,)/a(t;) = λ,/λ]	.	

Putting	Δt, = T,,	Δt] = T;	 the	period	of	 the	 light	wave	at	 the	earth	

and	the	emitting	star,	one	takes	

T,/T; = 	a(t,)/a(t;)=λ,/λ]	.	

where	λ,,	λ]	are	the	wavelengths	of	the	ray	at	the	earth	and	at	the	star	

respectively.	 The	 shift	 follows	 from	 λ,/λ] = 1 + z,	 z	 is	 measured	

positive,	so	a(t,)/a(t;) > 1	

and	 because	 t; < t,	 we	 conclude	 that	 the	 universe	 expands.	 The	

distance	r	of	the	star	was	a(t;)r	and	now	this	is	a(t,)r	.	

	At	the	preceding	time	t;	the	matter	density	was	greater	than	today	

because	of	the	expansion	

ρ(t;) = ρ5 + ρ.x'( + ρXx'8,		

where	

x = a(t;)/a(t,) = 1/(1 + z)		 (16.1)	
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17. THE TIME VARYING VACUUM ENERGY 
DENSITY (QUINTESSENCE) 

The	natural	way	to	introduce	a	varying	vacuum	energy	density	is	to	

assume	 the	 existence	 of	 one	 or	more	 scalar	 fields	 that	 the	 vacuum	

energy	density	depends	on	and	whose	expectation	values	vary	with	

time.	 Such	 fields	 are	 introduced	 in	 inflation	 theories.	 We	 are	

interested	 here	 in	 the	 case	 of	 Robertson-Walker	metric	 in	 a	 scalar	

field	that	depends	only	on	time,	not	position.	In	this	case	the	formulas	

for	the	scalar	field	energy	density	and	pressure	become	

ρE =
)
*
(dφ/dt)* + V(φ)		

pE =
)
*
(dφ/dt)* − V(φ)		

As	a	result	(1 + w)	ρE ≥ 0,where	w = pE/ρE.	So	the	case	w = −1	

represents	the	time	t = 0	of	 the	Big	Bang.We	will	now	consider	the	

time	t > 0.	The	Eq.6.1.10	of	energy	continuity	here	yields	

d*φ/dt* + 3Hdφ/dt + dV(φ)/dt = 0.		 (17.1)	

Τhis	is	the	equation	of	motion	of	a	particle	of	unit	mass	with	one	

dimensional	coordinate	φ	moving	in	a	potential	V(φ)	with	a	friction	

force	−3Hdφ/dt.	 The	 field	 will	 run	 toward	 lower	 values	 of	 V(φ),	

finally	coming	to	rest	at	a	local	minimum	of	V(φ).	We	can	adjust	an	

additive	constant	in	order	to	make	it	vanish	at	the	minimum.	
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• The	original	and	simple	example	is	provided	by	a	potential		

V(φ) = Μ(Plφ'l,		 (17.2)	

where	α	is	a	constant	0 < α < 1	and	M	also	a	constant,	which	gives	

V(φ)	the	dimension	of	energy	density.	Following	S.	Weinberg,for	any	

potential	it	is	necessary	that	at	sufficiently	early	times	ρE	was	much	

less	than	the	energy	density	ρ.	of	radiation,	because	any	appreciable	

increase	in	the	energy	density	at	the	time	of	nucleosynthesis,	would	

lead	to	a	He(	abundance	exceeding	what	is	observed.	At	these	early	

times	ρ.	is	also	greater	than	ρX.	

Eq.13.1	 gives	 a.~t)/*	 and	H = 1/2t.	 The	 field	 equation	 (17.1)	

with	the	potential	(17.2)	then	yield		

d*φ/dt* + 3(dφ/dt)/(2t) − αM(Plφ'l') = 0		 (17.3)	

This	has	a	solution		

φ = {[α(2 + α)*Μ(Plt*]/(6 + α)})/(*Pl)		 (17.4)	

Both	(dφ/dt)*and	V(φ)	then	go	as	t'*l/(*Pl)	and	therefore	at	very	

early	times	ρE = ρ5	must	have	been	less	than	ρ.	which	goes	as	t'*,	

Fig.17.1.	The	solution	Eq.17.4	is	not	unique,	but	is	an	attractor	in	the	

sense	that	any	other	solution	that	comes	close	to	it,	will	approach	it	as	

time	increases.	To	see	this,	note	that	a	small	perturbation	δφ	of	the	

solution	φ	of	(17.3)	and	φ = φ + δφ	(Eq.	17.3)	yields	

d*δφ/dt* + 3(dδφ/dt/dt)/(2t) + α(1 + α)Μ(Plφ'l'*δφ = 0.	

This	has	two	independent	solutions	of	the	form	



	82 

δφ~tx, γ = − )
(
±A1/16 − (6 + α)(1 + α)/(2 + α)*.	

The	square	root	is	 imaginary	for	α > 0,so	both	solutions	for	δφ	

decay	as	t')/(	for	increasing	t	.For	this	reason,	the	particular	solution	

φ	of	Eq.17.3	that	goes	as	Eq.17.4	is	known	as	the	“tracker	solution”,	

Fig.17.1.	

Fig.17.1	

The	 energy	 densities	 are	ρ5,	 the	 today’s	 (t = t,)	 and	ρ5	 at	 an	

earlier	time	t,	z~1/t.	

Nothing	 much	 changes	 when	 the	 radiation	 energy	 density	 drops	

below	ρ-.The	 tracker	 solution	φ	 continues	 to	 grow	as	 t*/(*Pl)	 and	

(dφ/dt)*	and	V(φ)	as	t'*l/(*Pl).	But	ρ-	and	ρ.	are	decreasing	faster,	

like	t'*,	so	eventually	ρ-	and	ρ.	will	fall	below	ρ5.	

• Similar	results	are	produced	if	we	take	as	potential	the”	linear”	form	

V(φ) = V, + V′,(φ − φ,).	
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The	today’s	w = pE/ρE	is	estimated	to	be	w = −0.777.	

The	values	of	ρ5,	ρ5,	and	the	redshift	z~1/t	is	shown	in	Fig.17.2.	

Fig.17.2	

We	infer	from	this	Figure	that	the	dark	energy	density	at	earlier	

times	 was	 greater	 than	 today.The	 explanation	 result	 is	 that	 ρ5; =

ρ9-; + ρ:-;	was	decreased,	because	as	his	 ingredient	dark	energy	

density	ρ:-;	had	no	 interaction	with	 the	bright	matter,had	also	no	

friction	with	it,	(the	coefficient	3Hdφ/dt	in	Eq.17.1	was	negligible).	So	

the	dark	matter	was	expanding	more	quickly	than	the	bright	matter	

and	was	 out	 of	 the	 horizon,	 not	 contributing	 longer	 to	 the	 energy	

density.		
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Some	z	and	ρ5/ρ5,	values	are:		

z	 tracker	ρ5/ρ5,	 linear	ρ5/ρ5,	

0	 1	 1	

0.5	 1.347	 1.2	

1	 1.712	 1.273	

3	 3.224	 1.331	

≥1	 ≥1	 1.340	
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18. THE CALCULATION OF THE AGE  
OF OUR UNIVERSE 

The	proper	distance	at	time	tr	from	the	origin	to	a	comoving	star	at	

radial	coordinate	r	according	to	Sect.6.1	is		

d(r, t) = a(tr) ∫ drC
, /√1 − kr* = a(tr)	�

sin')r	for	k = 1

r	for	k = 0

sinh')r	for	k = −1

		

We	define	x(t) = a(t)/a(t,),	a(t,) = 1,	x(t) = a(t).	

Then	 dx/dt = da(t)/a(t,)dt = (da(t)/dt)/a(t))(a(t)/a(t,)) =

H(t)x(t)	or	because	of	(6.15)		

dt = dx/x(t)H(t) = dx/a(t)H, =	

dx/x(t)H,AΩ5 + Ω\x'* + Ω-x'8 + Ω.x'(	

If	we	define	the	zero	of	time	as	corresponding	to	an	infinite	z,	the	

todays	time	tm = t(z),	the	x(0) = 0	and	the	todays	x = 1/(1 + z),	and	

integrate	we	have		

t(z) = 	H,') ∫ dx)/()Py)
, /AΩ*,	

where	Ω* = Ω5x* + Ω\ + ΩXx') + Ω.x'*	.	

Settling	z = 0	we	take	the	present	age	t,	of	the	cosmos	

t, = H,') ∫ dx)
, /AΩ*		 (18.1)	

For	 Ω5 = 0.72,	 ΩX = 0.28,	 Ω\ = Ω. = 0	 and	 H, = 70	 km/sec	 the	

above	integral	gives	t, = 13.4 × 10jyrs.
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19. THE LUMINOSITY AND MEASURING  
OF THE UNIVERSE’S AGE 

The	most	usual	method	of	determining	distances	 in	astronomy	was	

the	 determination	 of	 the	 apparent	 luminosity.	 The	 absolute	

luminosity	of	a	 light	source	 is	defined	to	be	the	emitted	energy	per	

second	and	the	apparent	luminosity	at	a	distance	d	is	the	energy	pro	

second	and	quadrat	centimeter	arrived.	

That	is	

l = L/(4πd*)	ergcm'*sec').	

At	 large	 distances	 this	 formula	 needs	 to	 be	modified	 for	 three	

reasons.	

● At	the	time	t,	that	the	light	reaches	the	earth	the	proper	distance	

r	 from	 the	 star	 to	 the	 earth	 becomes	 a(t,)r.	 Thus	 the	 sphere	

surface	4πd*	must	be	replaced	by	4π[a(	t,)r]*.	

● The	frequency	of	the	photon	arriving	on	earth	is	decreased	from	

the	 frequency	 emitted	 from	 the	 star	 by	 the	 redshift	 factor		

1/(1 + z).	

● The	energy	of	the	photon	arriving	on	earth	is	decreased	from	the	

energy	emmited	from	the	star	by	the	redshift	factor	1/(1 + z).	

Putting	 these	 together	 we	 have	 l = L/(4πds*),where	 ds =

a(t,)d(1 + z).	

	

In	the	second	century	AD	astronomer	Claudius	Ptolemy	published	

a	 catalog	 of	 1022	 stars	 with	 luminosity	 m	 belonging	 to	 one	 of	 6	

categories.	Stars	with	m = 1	were	bright	stars	and	stars	with	m=	6	
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were	stars	barely	visible.	

In	1856	Norman	Pogson	made	 the	discrete	 classification	of	 the	

Ptolemy	list,	continuous,	by	the	formula	

l = 10'*z/Y × 2.52 × 10Yerg. cm'*sec') = L/(4πds*),		

with	m	a	function	of	ds.	

	

Later	 it	 is	 decreed	 that	 the	 distance	 d	 be	 d= 10pc, (1pc = 3.1 ×

10)Zcm)	.	

So		

L = 10'*-/Y × 3.02 × 108Yerg. sec') = L/(4πds*),		

where	M	is	a	function	M(1 + z, a,),	where	L	is	the	absolute	and	M	the	

apparent	bolometric	luminosity.		

The	distance	d	can	also	be	expressed	through	their	modulus	m-M.		

d = 10)P(z'-)/Y	pc	.	

We	can	compare	the	photometric	measured	distance	d	as	function	of	

the	 luminosity	m−M	 and	 the	 calculated	 distances	 from	 (18.1)	 as	

function	of	z	and	Ω`s.	
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Fig.	19.1	

Fig.	19.1	shows	with	the	solid	and	dashed	curves	the	calculated	

distances.	The	photometrically	measured	distances	from	A.G.	Riess	et	

al.,	 Astron.	 J	 116,	 1009	 (1998)	 for	 some	 stars	 match	 best	 to	 the	

combination	 𝛺{ = 0.76,	 𝛺| = 0.24,	 𝛺} = 𝛺~ = 𝑘 = 0	 for	 the	

calculated	distances	of	the ---- line.	The	other	lines	represent:	

----	𝛺| = 0.20,	𝛺{ = 0,	𝛺� = 0.80, 

while -⋅-⋅-⋅- 𝛺| = 1.0,	𝛺{ = 0,	𝛺~ = 0.
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20. THE STAR EVOLUTION 

The	evolution	of	a	star	takes	a	very	long	time,	so	it	 is	 impossible	to	

observe	it.	

However	we	can	interpret	their	distance	order	as	time	order.One	

such	 index	 is	 the	 luminosity	 and	 one	 other	 is	 the	maximum	wave	

length	as	it	is	in	the	diagram	of	the	Plancks	radiation	law	of	the	black	

body.	So	we	come	up	to	the	Herzsprung-Russel	diagram,	Fig.20.1	

	

Fig.	20.1	
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In	this	diagram	we	take	as	abscissa	x	the	temperature	from	great	

to	 lower	 grades	 or	 from	blue-green-yellow	 to	 red	 according	 to	 the	

astronomers	 and	 as	 ordinate	 y	 the	 luminosity	 in	 units	 of	 the	 Sun	

luminosity.	

We	begin	with	the	birth	as	a	red	star	at	point	(1).	The	star	grows	

up	moving	 along	 a	 curve	 undergoing	 a	 gravitative	 contraction	 to	 a	

point	(2)	at	the	Main	Sequence	(MS).	In	this	curve	is	our	Sun,	almost	

in	the	middle	of	his	life.	The	place	on	the	main	sequence	is	a	function	

of	the	mass	of	the	star.	The	massiver	the	star,	the	higher	in	the	MS	will	

he	 be	 landed.	When	 the	 inner	 temperature	 reaches	20 × 107𝐾,	 the	

proton-	proton-	and	the	carbon-	process	begins.	These	processes	are	

in	equilibrium	with	the	radiation	emitted.	Just	before	the	core	is	12%	

of	the	mass,	the	star	undergoing	a	core	contraction	moves	along	the	

curve	(3),	(a	motion	computed	accurately	by	Schwarzschild)	to	land	

at	point	(4)	as	red	Giant	with	temperature	𝑇 = 2 × 10Z𝐾.	At	this	phase	

the	nitrogen-process	begins,	where	a	carbon	core	is	produced,	in	an	

environment	 of	 helium,	 similarly	 to	 the	 helium	 core	 in	 the	

environment	of	hydrogen.	In	the	helium	zone,	helium	is	transformed	

in	carbon,	oxygen,	silicon	and	iron.	The	first	part	of	the	way	(4)	to	(5)	

is	also	accurately	computed.	The	rest	of	the	way	until	the	end	is	based	

only	on	observations.	At	point	(5)	the	star	begins	eventually	to	pulse.	

At	point	(6)	lie	the	Novae	and	the	Supernovae,	who	explode	increasing	

their	 luminosity	15	 to	20	 times.	 If	 the	mass	 of	 the	 star	 is	 20	 times	

greater	 than	 the	 Sun’s	 mass	 what	 remains	 after	 the	 explosion	 is	

enough	to	begin	a	new	process.	The	gravitational	force	is	enormous	

and	gives	rise	to	attract	continuously	mass.	For	every	star	there	is	a	
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critical	 radius	 in	 relation	 to	 its	 mass,	 where	 the	 space-time	 is	 so	

distorted,	that	it	is	separated	from	its	environment	and	acts	as	a	black	

hole.	

Because	 of	 the	 great	 gravitation	 force	 a	 photon,	 with	 its	 dual	

property	as	mass	ℎ𝜈/𝑐*,	can't	escape	the	black	hole.	Only	in	the	edge	

of	 the	 Schwarzschild	 radius,	 after	 exact	 measuring	 of	 the	 photon	

momentum,	Δp	is	very	small,	and	because	of	the	Heisenberg	relation	

𝛥𝑝. 𝛥	𝑥 ≈ ħ,	 can	 Δx	 be	 great	 enough	 to	 escape	 the	 black	 hole,	 as	 S.	

Hawking	has	deduced.	

If	the	mass	of	the	star	is	less	than	20	times	the	mass	of	the	Sun,	

through	explosions	 	 so	much	mass	escapes	 that	 it	becomes	a	white	

dwarf.	The	white	dwarf	continues	to	radiate	till	his	color	changes	from	

white	 to	yellow,	 to	 red,	 to	violet	 till	 he	becomes	a	black	dwarf	 and	

disappears.	
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21. THE MICROWAVE RADIATION 
BACKGROUND 

Fig.	21.1	shows	the	spectrum	of	the	black-body,	where	the	intensity	

over	all	wavelengths	is		proportionate		to	𝑇(.	

Fig.21.1	

The	black	body	can	be	imagined	as	a	hidden	fire	at	the	universe.	

We	see	that	at	the	maximum	intensity	the	emitted	wavelength	𝜆�	is	a	

function	of	the	temperature	𝛵�	

This	relation	has	the	hyperbolic	form	

𝜆�𝛵� = 𝑐𝑜𝑛𝑠𝑡. = 𝜆,𝛵,.	

The	wavelenght	𝜆,	reached		us,		because		the	redshift	satisfies	the	

relation	

𝜆,/𝜆�=1 + 𝑧	.	

The	measured	𝜆, = 13	𝑚𝑚		corresponds		to		𝑇 = 2.725	𝛫	and	is	in	the	
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microwave	region.	

From	the	measured	1 + 𝑧 = 1100	we	conclude	that	𝜆� = 14	𝜇𝑚	and	

𝑇� = 	3000	𝐾.											

This	emission		took	place	long	after	the	Big-Bang.	

The	temperature	3000	K	of	the	blackbody	corresponds	to	the	last	

scattering	of	photons	to	the	electrons.	The	black-	body	spectrum		for	

the	 number	 density	 of	 photons	 in	 equilibrium	 with	 the	 matter	 at	

temperature	T	and	frequency	between	

𝜈�	and	𝜈� + 𝑑𝜈� 	is	𝑛(𝜈�)𝑑	𝜈� = 8𝜋𝜈�* 	𝑑𝜈�𝑒'),		

where		𝑒 = 	𝑒𝑥𝑝((ℎ𝜈�/𝑘�𝑇) − 1).	

In	an	isotropic	and	homogenous	empty	(𝐾 ≈ 0)	space		𝑥e = (𝑡, 𝒙)		

is	Lorentz	covariant,	h𝜈�/𝑘�T,	 (h=Planck-,	𝑘�=Boltzmann	constant)		

being	scalar			remains	constant.	

That	is			ℎ𝜈�/𝑘�𝑇� = ℎ𝜈,/𝑘�𝑇,.	It	follows	that	

𝜈�/𝛵�=𝜈,/𝛵,,		or		𝜈�/𝜈,=𝜆,/𝜆�=1 + 𝑧=𝑎,/𝑎�=𝑇�/𝑇,,	

𝑇, = 𝑎�𝑇�/𝑎,,	or	𝑇,~𝑎,'),	or	T(t)~𝑎(𝑡)')	.	

Anisotropies	in	the	cosmic	microwave	background	can	occur,	if	in	

the	 light	 line	 are	 interposed	 galaxies	 of	 dark	 matter,	 unseen	 from		

earth,	but	still	reflecting	light	because	of	gravitational	interaction	with	

the	photons,	(see	Sec.	23).	

Another	reason	is	the	spectrum	of	density	fluctuations	during	the	

birth	of	stars.	
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The	 mean	 square	 temperature	 fluctuations	 of	 the	 CMB	 are	

expected	to	depend	on	angle,	showing	a	sequence	of	peaks	at	different	

angles,	Fig.	21.2.	

Fig.21.2
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22. AGES ESTIMATED THROUGH  
NUCLEUS DECAYS 

Apart	of	the	estimation	of	the	cosmos	age	𝑡,		from	the	equation	(18.1),		

we	can	think	to	estimate	𝑡,	using	the	natural	decay	of	an	isotope.	If	the	

initial	 concentration	 is	 𝑐,	 and	 the	 decay	 rate	 λ,	 the	 today	

concentration	is		

𝑐 = 𝑐,𝑒𝑥𝑝(−𝜆𝑡)			 (22.1)	

We	go	 further	 if	we	use	 two	 isotopes	with	 the	 relative	present	

concentration		𝑐)/𝑐*	

which	is	

𝑐)/𝑐* = 𝑒𝑥𝑝[(𝜆* − 𝜆))𝑡]𝑐),/𝑐*,,	 (22.2)	

with	𝑐),,	𝑐*,	the	initial	abundances	of	the	radioactive	elements	𝐸)and	

𝐸*.	

Abundance	deductions	of	certain	long-lived	radioactive	isotopes	

can	be	employed	as	chronometers	to	determine	the	ages	of	the	oldest	

stars.	

There	have	been	a	number	of	recent	detections	of	the	element	Th,	

with	a	half-life	of	14	Gyr,	in	the	poor	Fe	halo	stars.	This	element,	along	

with	 Uranium,	 is	 synthesised	 solely	 in	 the	 rapid	 neutron	 capture	

process	(r-process).	

Comparison	of	the	observed	stellar	abundance	of	this	radioactive	

element	with	 its	 initial	 (time-zero)	 abundance	 in	 an	 r-process	 site	

leads	to	a	direct	radioactive-age	estimate	of	the	star.	We	show	in	Fig.	
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22.1	the	abundance	distribution,	including	Th,	in	the	star	CS	22892-

052.	 While	 the	 heavy	 n-capture	 elements	 are	 consistent	 with	 the	

scaled	solar	r-process	curve,	the	observed	Th	abundance	lies	below	

this	same	line.		

Fig.22.1.	Αbudances	of	 elements	produced	by	 the	 r-process	 in	 the	 star	
BD+17,3248,	 obtained	 by	 ground	 based	 and	Hubble	 Space	 Telescope	
spectroscopic	 observations.	 The	 solid	 curve	 gives	 theoretical	 initial	
abundances,	 based	 on	 solar	 system	 data.	 From	 J.J.	 Cowan	 et	 al.,	
Astrophys.	J	572,	861	(2002)	[astro-ph/0202429].						

This	difference	is	a	clear	demonstration	that	this	star	is	older	than	

the	 sun.	 To	 determine	 how	much	 older	 requires	 knowledge	 of	 the	

initial	Th	abundance	that	must	be	predicted	from	r-process	models.	

Such	a	model	calculation	is	illustrated	in	Fig.	22.1	by	the	dashed	line.	
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Such	predictions	employ	the	ratio	of	Th	to	another	r-process	element,	

typically	the	Eu.			

Going	back	to	Eq.22.1	we		have	the	time	

𝑡 = 𝑙𝑛(𝑐)𝑐*,/𝑐),𝑐*)/(𝜆* − 𝜆)).	

Setting	𝐴 = 𝑐)/𝑐*,	𝐴, = 𝑐),/𝑐*,,	𝑐), = 𝑙𝑜𝑔𝜀),,	𝑐*, = 𝑙𝑜𝑔𝜀*,	we	get	

𝑡 = (𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝜀), + 𝑙𝑜𝑔𝜀*,)/(𝜆* − 𝜆)).	 (22.3)	

Τhe	today’s	values	A,	𝜆),	𝜆*	can	be	measured	and	the	values	of	the	

log𝜀),,	log𝜀*,can	be	read	from	the	Fig.	22.1	.	
	

For	the	pair	𝑈*8Z,	𝑇ℎ*8*,	Eq.	22.3	gives			𝑡, ≈ 15.5	Gyrs,	while	for	

the	pair			𝑇ℎ*8*,	𝐸𝑢)Y*,Eq.22.3	gives			𝑡, ≈ 11 − 15 ± 4	Gyrs.	
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23. INTERACTION OF THE PHOTON WITH 
MATTER AND MEASURING OF THE DARK 
MATTER 

23.1 Attraction of the photon from the earth. 
One	γ-quantum	has	the	energy	E = ω,	and	the	momentum	k	(♄ = c =

1).	Emitted	from	an	excited	atom	energy	level		E;	with	middle	life	time	

τ	goes	to	the	stable	ground	state	Ek.His	energy	is	ω, = E; − Ek,	(H.	

Wegener,	R.	Moessbauer).	

The	 corresponding	 middle	 energy	 width	 Γ	 according	 to	

Heisenberg	is	

Γτ = 1.	

Τhe	nucleus	having	a	momentum	vector	𝐩 = M𝐯		before	the	emission	

has	the	energy		

E)=E;+p*/(2M)	

and	after	the	emission	of	the	γ	quantum	with	momentum	k	the	energy		

is	

E* = Ek + (𝐪𝟐)/(2M),	where	𝐪 = 𝐩 − 𝐤	.	

The	energy	difference	goes	to	the	γ-quantum.	

ω=E) − E*=E; − Ek − kvcosφ − k*/(2M)=	

ω, − kvcosφ − k*/(2M).	

kvcosφ	is	the	Doppler	shift	and	k*/(2M)	the	back	push	energy.			

For	the	isotope			Fe*7Y`	 	 is	 	k*/(2M) ≈ kv = 2 × 10'*eV	(for	a	middle	

room	temperature	velocity	v ≈ 100	m/s,		Γ = 4.6 × 10'jeV).	

If	the	 	Fe*7Y`	 	atom	is	embedded	in	a	crystal	(v ≈ 0	and	M ≈ ∞	 is	the	
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crystal	mass)	then	we	must	substitute	kvcosφ − k*/(2M)	through	the	

oscillations	energy	ΔE[.	

So	 	 ω = ω, − ΔE[.	

The	intensity	I(ω)	as	function	of	ω	has	now	the	form	of	Fig.	23.1.		

Fig.	23.1	

The	 “line	ω,”	 (after	 embedding	 Fe	 in	 a	 crystal)	 is	 named	 after	 its	

discoverer	R.	Mössbauer,	for	which	he	was	in	the	1961	Nobel	laureate.	

Using	 the	dual	property	of	 the	photon	as	mass,	one	γ-quantum	

with	energy	ћω	has		mass	mx = ћω,/c*.	

In	the	gravity	field	of	the	earth	in	a	high	z		the	potential	energy	is	

E�mB = mxgz = ћω,gz/c*,	(g = 981	cm/s).	

From	the	energy	conservation	we	have		

ћω, = 	ћω + E�mB = ћω,(1 + gz/c*).	

This	means	a	redshift	ω	

Δω = ω, −ω = gzω/c*.	
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For	 z = 22.5	m		Δω/ω = 2.46 × 10')Y.	 For	 the	 Fe	 isotope	 γ-ray	

this	 is	 a	 shift	 of	 ≈1%	 of	 Γ/ω,.	 This	 is	 small	 but	 with	 the	 sharp	

“Mössbauer	line”	it	is		measurable.	

Trough	undercooling	the	middle	life	τ	increases	and	Γ	decreases	

making	the	ω,very	sharp.	

23.2 Measuring of the dark matter 
In	the	presence	of	dark	matter	M	a	sphere	of	radius	R,	functions	as	a	

lens.	

The	radius	R	of	the	lens	is	the	closest	approach	to	a	light	beam	and	

then	the	deflection	is	maximized.	From	the	general	theory	of	relativity	

we	know	that	the	deflection	angle	is	

γ = 4MG/R.	

For	the	angles	in	the	Fig.23.2	we	get	

	

Fig.23.2	

β = R/d(ΕL),			γ = d(XS)/d(LS),			β − α	 = d(XS)/d(ES)	

From	the	above	equations		follows	that		

	(β − α)β = γd(LS). R/(d(ES). d(EL)	) =	
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4MG. d(LS)/(d(ES)d(EL)) = β]* 	

The	equation	β* − αβ − β]* = 0	has	the	solutions	

β±	= (α/2) ± Aβ]* + α*/4		 (23.1)	

The	 angle	 α	 is	 unknown	 because	 L	 is	 dark	 but	 we	 can	 eventually	

measure	the	angle	βP − β'	between	the	two	images	at	the	opposite	

radii.	So	the	absolute	difference	

δ = 	IβP − β'I = 2Aβ]* + α*/4 ≥ 2β]		 (23.2)	

From	this	relation	we	can	estimate	an	upper	bound			

Μ ≤ δ*d(ES)d(EL)/16Gd(LS)		 (23.3)	

For	 instance	 if	 d(EL) = d(LS) = 100Mpc,	 d(ES) = 200Mpc	 and	

the	two	images	at	the	opposite	radii	of	the	lens	are	separated	by		βP −

β' = 1”		then	M ≤ 	6 × 10j	Solar	masses.	

In	the	case	where	L	lies	on	the	straight	line	between	the	source	

and	the	earth,	we	have	cylindrical	symmetry.	So	the	two	images	come	

to	build	a	ring	around	the	lens.	Then	setting	in	Eq.	23.2		α = 0	we	get	

IβP − β'I = 2β]		 (23.4)	

From	the	equation		

β]* = 4MGd(LS)/d(ES)d(EL)	

we	can	find	the	value	M	

M = β]*d(ES)d(EL)/	4Gd(LS).
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24. SUN RADIATION PROCESSES 

The	sun	as	the	center	of	our	system	is	the	most	important	star	for	us.	

Its	 mass	 is	M⊙	= 1.99 × 108,kg,	 its	 radius	 	R! = 1.4 × 107km,	 its	

luminosity	L = 2.4 × 107MeV.sec')	and	its	age	is	about		14	Gyrs.	His	

rotation	period	is	25.4	days	and	the	temperature	goes	from	inside	to	

the	outer	surface	from	7000	K	to	4000	K,	(K.	Stumpff)	.	

Aside	from	its	precious	radiation,	it	is	the	place	where	we	can	test	

experiments	for	more	distant	stars.		

The	emitted	radiation	comes	from	transforming	its	hydrogen	to	

He	in	two	ways:	

24.1. Τhe proton-proton process 
This	process	is	the	most	probable	source	of	energy	in	stars	with	mass	

similar	to	the	Sun.	The	first	steps	are	common:	

p-p	reaction:	 H)) + H)) → H)* + eP + n + 1.74	MeV/Mol	.	

Pep	reaction:	H)) + e' → n,	H)) + n → D)* + 1.44	MeV/Mol	.	

	 	 	 D)* + H)) → He*8 + γ	

The	second		reaction:	He*8 + He*8 → He*( + 2H)).	

The	third	reaction:	He*8 + He*( → Be(` + γ	

Be(` + e' → Li8` + n + 0.86	MeV/Mol,	(with	propability	0.9)	and	

Be(` + e' → Li8`∗ + n + 0.38	MeV/Mol,	(with	propability	0.1)		

Li8` + H)) → 2He*( → Be(` + γ	

Be(` + H)) → BYZ + γ	

BYZ + e' → Be(Z∗ + eP + n + 14.06	MeV/Mol,	

Be(Z∗ → 2He*(		

As	sum	
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2H)) + 2n → He*( + 3.736 × 108	MeV/Mol,	

(W.Finkelnburg)	
(24.1)	

24.2. The carbon cycle 
As	 we	 see	 in	 the	 Fig.24.1	 one	 carbon	 reacts	 with	 one	 hydrogen	

building	a	nitrogen	plus	a	positron	and	so	on.	

	The	final	result	is				Ηe*(		and	a		C7)*.	Thus	coal	took	part	in	the	reaction	

as	catalyst.	

	

Fig.24.1.	The	carbon	cycle.	

All	in	all,	we	have	once	more		the	reaction	of	Eq.	24.1.	

24.3. Τhe energy through nuclear fusion and fission 
Accurate	measurement	of	the	mass	of	the	baryons	of	different	atoms	

shows	 that	 it	 depends	 on	 the	 atom	 in	 which	 they	 participate.As	
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example	consider	the	He*(	nuclei	with	atomic	mass	4.0015.	It	is	built	

from	2	protons	with	atomic	mass	1.0073	and	2	neutrons	with	atomic	

mass	 1.0086	 in	 the	 sum	 4.0318.	 TheHe*(	 is	 0.0303	 atomic	 masses	

lighter	 than	 the	 sum	 of	 his	 ingredients.	 This	 mass	 difference	 after	

fusion	 of	 two	 H-atoms	 and	 two	 neutrons	 to	 build	 an	He*(	 atom	 is		

transformed	in	energy	E	according	to	the	Einstein	equation		

E = mc*.	

Similar	argumentation	holds	for	the	nuclear	plants,	where	f.i.	U⬚
*8Y	is	

split	in	Barium	and	Krypton	under	release	of	energy	transformed	in	

Heat	and	then	in	electric	energy.	1kg	U⬚
*8Y	gives	the	same	energy	as	

30000	kg	carbon.	The	bindings	energy	 for	protons	and	neutrons	 in	

Mega	electron	Volts	(MeV)	is	shown	in	Fig.	24.2.	

	
Fig.24.2	
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The	 emissions	 of	 particles	 (γ, e', e, ν, α)	 from	 the	 nucleus	

represent	the	long	range	weak	interaction	while	the	Yukawa	potential					

V(r) = −g*e'zC/4π	

	of	the	nucleus	constituents	(quarks	which	are	bound	with	gluons)		

represent	the	short	range	strong	interaction.	

24.4. Τhe Sun activity 
The	 Sun’s	magnetic	 field	 changes	polarity	 approximately	 	 every	11	

years.It	 happens	 at	 the	 peak	 of	 each	 solar	 cycle	 as	 the	 sun’s	 inner	

magnetic	situation	re-organizes	itself.	The	coming	reversal	is	before	

us.	The	poles	are	the	herald	of	change.	Just	as	Earth	scientists	watch	

our	planet’s	polar	regions	for	signs	of	climate	change,	solar	physicists	

do	the	same	thing	for	the	sun.			

The	polar	magnetic	field	of	the	sun	weakens,	goes	to	zero	and	then	

reappears		with	the	opposite	polarity.	This	is	a	regular	part	of	the	solar	

cycle.	

Following	 T.	 Phillips	 a	 reversal	 of	 the	 sun’s	 magnetic	 field	 is,	

literally	a	big	event.	The	domain	of	the	sun’s	magnetic	influence	(also	

known	 as	 “heliosphere”)	 stretches	 billions	 of	 kilometers	 beyond	

Pluto.	Changes	of	the	field’s	polarity	ripple	all	the	way	out	to	Voyager	

probes,	on	the	doorstep	of	interstellar	space.	

When	 solar	 physicists	 talk	 about	 solar	 field	 reversals,	 their	

conversation	often	focuses	on	the	“current	sheet”.	The	current	sheet	

is	a	sprawling	surface	jutting	outward	from	the	sun’s	equator	where	

the	 sun’s	 slowly	 rotating	 field	 induces	 an	 electrical	 current.	 The	

current	itself	is	small,	but	there	is	a	lot	of	it.	The	amperage	flows	in	an	
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area	10,000	km	thick	and	billions	of	km	wide.	Electrically	speaking,	

the	entire	heliosphere	is	organized	around	this	enormous	sheet.	

During	field	reversals,	the	current	sheet	becomes	very	wavy,	the	

undulations	like	the	seams	on	a	baseball.	As	Earth	orbits	the	sun,	we	

dip	in	and	out	of	the	current	sheet.	

Transitions	 from	one	 side	 to	 another	 can	 stir	 up	 stormy	 space	

weather	around	our	planet.	

Cosmic	 rays	 are	 also	 affected.	 These	 are	 high	 energy	 particles	

accelerated	to	nearly	light	speed	by	Supernova	explosions	and	other	

violent	events	in	the	galaxy.	Cosmic	rays	are	a	danger	to	astronauts	

and	tele	communications	satellites.	The	current	sheet	acts	as	a	barrier	

to	cosmic	rays,	deflecting	them	as	they	attempt	to	penetrate	the	inner	

solar	system.	A	wavy,	crinkly	sheet	acts	as	a	better	shield	against	these	

energetic	particles	from	deep	space.	

As	 the	 field	 reversal	 approaches,	 data	 show	 that	 the	 sun’s	 two	

hemispheres	are	out	of	synchronisation.	

The	sun’s	north	pole	has	already	changed	sign,	while	 the	south	

pole	is	racing	to	catch	up.	Soon	however	both	poles	will	be	reversed	

and	the	second	half	of	solar	max	will	be	underway.
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25. UNIT SYSTEMS 

25.1. The international system (SI) 
The	International	System	of	units	is	based	on	Meter-Kilogram-Second	

system	 (MKS)	 of	 units.	 These	 are	 the	 fundamental	 units	 of	 the	

Mechanic.	 All	 other	 units	 (energy,	 momentum,	 velocity,	 energy	

density	and	so	on)	can	be	expressed	as	powers	of	the	base	units.	The	

SI-system	is	mostly	used	by	engineers.	

Physicists	in	special	domains,	where	one	or	more	constants	are	

frequently	used,	as	f.i.	the	velocity	of	light	or	the	gravitational	constant	

G,	prefer	to	be	released	of	them,	setting	these		equal	to	1	.	

So	we	come	to	special	unit	systems.	

25.2 Natural units   
Natural	units	are	used	almost	exclusively	 in	cosmology	and	general	

relativity	(A.L.	Myers).	There	are	often	used	the	constants	of	the	

	

velocity	of	light	 c = 2.9979 × 10Zm/s	

the	reduced	Planck		constant	 ħ = 1.0546 × 10'8(J	s	

the	Boltzmann	constant	 k9 = 1.3806 × 10'*8J	K')	

and	the	electric	constant	 ε, = 8.8542 × 10')*A*s(Kg')m'8.	

	

So	they	all	are	set	equal	to	1.	

Table	 1	 provides	 conversion	 factors	 for	 some	 of	 the	 variables	

encountered	in	cosmology.	
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Table	1.	Natural	units	

As	example	we	discuss	the	Einstein	equation	

R<= − g<=R/2 − Λg<==8πGT<=.	

The	Planck	mass	is		

mp = Aħc/G = 2.1764 × 10'ZKg.	

In	 natural	 units	 mp = 1.2209 × 10)jGeV.	 Replacement	 of	 the	

gravitational	 constant	 in	 Einstein’s	 equation	 with	 the	 Planck	mass	

gives		

R<= − g<=R/2 − Λg<= = 8πT<=/mp
* .	

Continuing	with	natural	units,	the	energy	momentum	tensor	has	

units	of	energy	density		GeV(	and	the	Planck	mass	units	of	GeV.	The	

RHS	of	 the	equation	 therefore	has	units	of	GeV*.	On	 the	LHS	of	 the	

equation,	the	metric	tensor,	g<=	is	dimensionless	so	the	Ricci	tensor		

R<=,	Ricci	scalar	R	and	the	cosmological	constant	Λ	all	have	natural	

units	of	GeV*,	or	mass	squared	since	mass	and	energy	are	equivalent.	

Let	us	consider	the	cosmological	constant	Λ	which	has	the	same	

units	 as	 the	 energy	 momentum	 tensor	 T<=	 and	 called	 the	 energy	

density	of	the	vacuum	ρ5:	
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ρ;5 ≈ 3 × 10'(`GeV(.	

The	mass	density	of	the	vacuum	is				ρ-5 ≈ 0.92 × 10'*7Kg/m8.	

Λ = 8πρ;5/mp
* = 5.06 × 10'Z(GeV*.	

This	natural	unit	converted	to	the	SI	unit	gives	

Λ = 1.3 × 10'Y*m'*.	

Conversion	 of	 the	 vacuum	 energy	 density	 from	 natural	 units	 in	 SI	

units	gives		

ρ;5=6.3 × 10'),J	m'8.	

25.3. Geometrized units 
In	gravitational	problems	appear	often	the	constant	

Speed	of	light	c = 2.9979 × 10Zm/s,	and	the		

Newton’s	constant	G = 6.6743 × 10'))m8kg')s'*.	

	

So	it	is	comfortable	to	take	them	

c = G = 1	

and	the	result	is	the	conversions	Table	2.	

	

	
Table	2.	Geometrized	Units	
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25.4. Units for Special relativity 
In	the	Special	Theory	of	Relativity		the	constant		

speed	of	light	c = 2.9979 × 10Zm/s	is	often	used.	

Setting	it		c = 1,we	become	the	Table	3.	

	

	
Table	3.	Special	Relativity	Units
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